summaryrefslogtreecommitdiff
path: root/release/src/router/busybox/libbb/pw_encrypt_des.c
diff options
context:
space:
mode:
Diffstat (limited to 'release/src/router/busybox/libbb/pw_encrypt_des.c')
-rw-r--r--release/src/router/busybox/libbb/pw_encrypt_des.c820
1 files changed, 820 insertions, 0 deletions
diff --git a/release/src/router/busybox/libbb/pw_encrypt_des.c b/release/src/router/busybox/libbb/pw_encrypt_des.c
new file mode 100644
index 00000000..c8e02ddf
--- /dev/null
+++ b/release/src/router/busybox/libbb/pw_encrypt_des.c
@@ -0,0 +1,820 @@
+/*
+ * FreeSec: libcrypt for NetBSD
+ *
+ * Copyright (c) 1994 David Burren
+ * All rights reserved.
+ *
+ * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
+ * this file should now *only* export crypt(), in order to make
+ * binaries of libcrypt exportable from the USA
+ *
+ * Adapted for FreeBSD-4.0 by Mark R V Murray
+ * this file should now *only* export crypt_des(), in order to make
+ * a module that can be optionally included in libcrypt.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the author nor the names of other contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * This is an original implementation of the DES and the crypt(3) interfaces
+ * by David Burren <davidb@werj.com.au>.
+ *
+ * An excellent reference on the underlying algorithm (and related
+ * algorithms) is:
+ *
+ * B. Schneier, Applied Cryptography: protocols, algorithms,
+ * and source code in C, John Wiley & Sons, 1994.
+ *
+ * Note that in that book's description of DES the lookups for the initial,
+ * pbox, and final permutations are inverted (this has been brought to the
+ * attention of the author). A list of errata for this book has been
+ * posted to the sci.crypt newsgroup by the author and is available for FTP.
+ *
+ * ARCHITECTURE ASSUMPTIONS:
+ * It is assumed that the 8-byte arrays passed by reference can be
+ * addressed as arrays of uint32_t's (ie. the CPU is not picky about
+ * alignment).
+ */
+
+
+/* Parts busybox doesn't need or had optimized */
+#define USE_PRECOMPUTED_u_sbox 1
+#define USE_REPETITIVE_SPEEDUP 0
+#define USE_ip_mask 0
+#define USE_de_keys 0
+
+
+/* A pile of data */
+static const uint8_t IP[64] = {
+ 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
+ 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
+ 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
+ 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
+};
+
+static const uint8_t key_perm[56] = {
+ 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
+ 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
+ 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
+ 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
+};
+
+static const uint8_t key_shifts[16] = {
+ 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
+};
+
+static const uint8_t comp_perm[48] = {
+ 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
+ 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
+ 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
+ 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
+};
+
+/*
+ * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
+ */
+#if !USE_PRECOMPUTED_u_sbox
+static const uint8_t sbox[8][64] = {
+ { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
+ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
+ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
+ 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
+ },
+ { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
+ 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
+ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
+ 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
+ },
+ { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
+ 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
+ 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
+ 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
+ },
+ { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
+ 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
+ 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
+ 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
+ },
+ { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
+ 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
+ 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
+ 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
+ },
+ { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
+ 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
+ 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
+ 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
+ },
+ { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
+ 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
+ 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
+ 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
+ },
+ { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
+ 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
+ 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
+ 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
+ }
+};
+#else /* precomputed, with half-bytes packed into one byte */
+static const uint8_t u_sbox[8][32] = {
+ { 0x0e, 0xf4, 0x7d, 0x41, 0xe2, 0x2f, 0xdb, 0x18,
+ 0xa3, 0x6a, 0xc6, 0xbc, 0x95, 0x59, 0x30, 0x87,
+ 0xf4, 0xc1, 0x8e, 0x28, 0x4d, 0x96, 0x12, 0x7b,
+ 0x5f, 0xbc, 0x39, 0xe7, 0xa3, 0x0a, 0x65, 0xd0,
+ },
+ { 0x3f, 0xd1, 0x48, 0x7e, 0xf6, 0x2b, 0x83, 0xe4,
+ 0xc9, 0x07, 0x12, 0xad, 0x6c, 0x90, 0xb5, 0x5a,
+ 0xd0, 0x8e, 0xa7, 0x1b, 0x3a, 0xf4, 0x4d, 0x21,
+ 0xb5, 0x68, 0x7c, 0xc6, 0x09, 0x53, 0xe2, 0x9f,
+ },
+ { 0xda, 0x70, 0x09, 0x9e, 0x36, 0x43, 0x6f, 0xa5,
+ 0x21, 0x8d, 0x5c, 0xe7, 0xcb, 0xb4, 0xf2, 0x18,
+ 0x1d, 0xa6, 0xd4, 0x09, 0x68, 0x9f, 0x83, 0x70,
+ 0x4b, 0xf1, 0xe2, 0x3c, 0xb5, 0x5a, 0x2e, 0xc7,
+ },
+ { 0xd7, 0x8d, 0xbe, 0x53, 0x60, 0xf6, 0x09, 0x3a,
+ 0x41, 0x72, 0x28, 0xc5, 0x1b, 0xac, 0xe4, 0x9f,
+ 0x3a, 0xf6, 0x09, 0x60, 0xac, 0x1b, 0xd7, 0x8d,
+ 0x9f, 0x41, 0x53, 0xbe, 0xc5, 0x72, 0x28, 0xe4,
+ },
+ { 0xe2, 0xbc, 0x24, 0xc1, 0x47, 0x7a, 0xdb, 0x16,
+ 0x58, 0x05, 0xf3, 0xaf, 0x3d, 0x90, 0x8e, 0x69,
+ 0xb4, 0x82, 0xc1, 0x7b, 0x1a, 0xed, 0x27, 0xd8,
+ 0x6f, 0xf9, 0x0c, 0x95, 0xa6, 0x43, 0x50, 0x3e,
+ },
+ { 0xac, 0xf1, 0x4a, 0x2f, 0x79, 0xc2, 0x96, 0x58,
+ 0x60, 0x1d, 0xd3, 0xe4, 0x0e, 0xb7, 0x35, 0x8b,
+ 0x49, 0x3e, 0x2f, 0xc5, 0x92, 0x58, 0xfc, 0xa3,
+ 0xb7, 0xe0, 0x14, 0x7a, 0x61, 0x0d, 0x8b, 0xd6,
+ },
+ { 0xd4, 0x0b, 0xb2, 0x7e, 0x4f, 0x90, 0x18, 0xad,
+ 0xe3, 0x3c, 0x59, 0xc7, 0x25, 0xfa, 0x86, 0x61,
+ 0x61, 0xb4, 0xdb, 0x8d, 0x1c, 0x43, 0xa7, 0x7e,
+ 0x9a, 0x5f, 0x06, 0xf8, 0xe0, 0x25, 0x39, 0xc2,
+ },
+ { 0x1d, 0xf2, 0xd8, 0x84, 0xa6, 0x3f, 0x7b, 0x41,
+ 0xca, 0x59, 0x63, 0xbe, 0x05, 0xe0, 0x9c, 0x27,
+ 0x27, 0x1b, 0xe4, 0x71, 0x49, 0xac, 0x8e, 0xd2,
+ 0xf0, 0xc6, 0x9a, 0x0d, 0x3f, 0x53, 0x65, 0xb8,
+ },
+};
+#endif
+
+static const uint8_t pbox[32] = {
+ 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
+ 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
+};
+
+static const uint32_t bits32[32] =
+{
+ 0x80000000, 0x40000000, 0x20000000, 0x10000000,
+ 0x08000000, 0x04000000, 0x02000000, 0x01000000,
+ 0x00800000, 0x00400000, 0x00200000, 0x00100000,
+ 0x00080000, 0x00040000, 0x00020000, 0x00010000,
+ 0x00008000, 0x00004000, 0x00002000, 0x00001000,
+ 0x00000800, 0x00000400, 0x00000200, 0x00000100,
+ 0x00000080, 0x00000040, 0x00000020, 0x00000010,
+ 0x00000008, 0x00000004, 0x00000002, 0x00000001
+};
+
+static const uint8_t bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
+
+
+static int
+ascii_to_bin(char ch)
+{
+ if (ch > 'z')
+ return 0;
+ if (ch >= 'a')
+ return (ch - 'a' + 38);
+ if (ch > 'Z')
+ return 0;
+ if (ch >= 'A')
+ return (ch - 'A' + 12);
+ if (ch > '9')
+ return 0;
+ if (ch >= '.')
+ return (ch - '.');
+ return 0;
+}
+
+
+/* Static stuff that stays resident and doesn't change after
+ * being initialized, and therefore doesn't need to be made
+ * reentrant. */
+struct const_des_ctx {
+#if USE_ip_mask
+ uint8_t init_perm[64]; /* referenced 2 times */
+#endif
+ uint8_t final_perm[64]; /* 2 times */
+ uint8_t m_sbox[4][4096]; /* 5 times */
+};
+#define C (*cctx)
+#define init_perm (C.init_perm )
+#define final_perm (C.final_perm)
+#define m_sbox (C.m_sbox )
+
+static struct const_des_ctx*
+const_des_init(void)
+{
+ unsigned i, j, b;
+ struct const_des_ctx *cctx;
+
+#if !USE_PRECOMPUTED_u_sbox
+ uint8_t u_sbox[8][64];
+
+ cctx = xmalloc(sizeof(*cctx));
+
+ /* Invert the S-boxes, reordering the input bits. */
+ for (i = 0; i < 8; i++) {
+ for (j = 0; j < 64; j++) {
+ b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
+ u_sbox[i][j] = sbox[i][b];
+ }
+ }
+ for (i = 0; i < 8; i++) {
+ fprintf(stderr, "\t{\t");
+ for (j = 0; j < 64; j+=2)
+ fprintf(stderr, " 0x%02x,", u_sbox[i][j] + u_sbox[i][j+1]*16);
+ fprintf(stderr, "\n\t},\n");
+ }
+ /*
+ * Convert the inverted S-boxes into 4 arrays of 8 bits.
+ * Each will handle 12 bits of the S-box input.
+ */
+ for (b = 0; b < 4; b++)
+ for (i = 0; i < 64; i++)
+ for (j = 0; j < 64; j++)
+ m_sbox[b][(i << 6) | j] =
+ (uint8_t)((u_sbox[(b << 1)][i] << 4) |
+ u_sbox[(b << 1) + 1][j]);
+#else
+ cctx = xmalloc(sizeof(*cctx));
+
+ /*
+ * Convert the inverted S-boxes into 4 arrays of 8 bits.
+ * Each will handle 12 bits of the S-box input.
+ */
+ for (b = 0; b < 4; b++)
+ for (i = 0; i < 64; i++)
+ for (j = 0; j < 64; j++) {
+ uint8_t lo, hi;
+ hi = u_sbox[(b << 1)][i / 2];
+ if (!(i & 1))
+ hi <<= 4;
+ lo = u_sbox[(b << 1) + 1][j / 2];
+ if (j & 1)
+ lo >>= 4;
+ m_sbox[b][(i << 6) | j] = (hi & 0xf0) | (lo & 0x0f);
+ }
+#endif
+
+ /*
+ * Set up the initial & final permutations into a useful form.
+ */
+ for (i = 0; i < 64; i++) {
+ final_perm[i] = IP[i] - 1;
+#if USE_ip_mask
+ init_perm[final_perm[i]] = (uint8_t)i;
+#endif
+ }
+
+ return cctx;
+}
+
+
+struct des_ctx {
+ const struct const_des_ctx *const_ctx;
+ uint32_t saltbits; /* referenced 5 times */
+#if USE_REPETITIVE_SPEEDUP
+ uint32_t old_salt; /* 3 times */
+ uint32_t old_rawkey0, old_rawkey1; /* 3 times each */
+#endif
+ uint8_t un_pbox[32]; /* 2 times */
+ uint8_t inv_comp_perm[56]; /* 3 times */
+ uint8_t inv_key_perm[64]; /* 3 times */
+ uint32_t en_keysl[16], en_keysr[16]; /* 2 times each */
+#if USE_de_keys
+ uint32_t de_keysl[16], de_keysr[16]; /* 2 times each */
+#endif
+#if USE_ip_mask
+ uint32_t ip_maskl[8][256], ip_maskr[8][256]; /* 9 times each */
+#endif
+ uint32_t fp_maskl[8][256], fp_maskr[8][256]; /* 9 times each */
+ uint32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; /* 9 times */
+ uint32_t comp_maskl[8][128], comp_maskr[8][128]; /* 9 times each */
+ uint32_t psbox[4][256]; /* 5 times */
+};
+#define D (*ctx)
+#define const_ctx (D.const_ctx )
+#define saltbits (D.saltbits )
+#define old_salt (D.old_salt )
+#define old_rawkey0 (D.old_rawkey0 )
+#define old_rawkey1 (D.old_rawkey1 )
+#define un_pbox (D.un_pbox )
+#define inv_comp_perm (D.inv_comp_perm )
+#define inv_key_perm (D.inv_key_perm )
+#define en_keysl (D.en_keysl )
+#define en_keysr (D.en_keysr )
+#define de_keysl (D.de_keysl )
+#define de_keysr (D.de_keysr )
+#define ip_maskl (D.ip_maskl )
+#define ip_maskr (D.ip_maskr )
+#define fp_maskl (D.fp_maskl )
+#define fp_maskr (D.fp_maskr )
+#define key_perm_maskl (D.key_perm_maskl )
+#define key_perm_maskr (D.key_perm_maskr )
+#define comp_maskl (D.comp_maskl )
+#define comp_maskr (D.comp_maskr )
+#define psbox (D.psbox )
+
+static struct des_ctx*
+des_init(struct des_ctx *ctx, const struct const_des_ctx *cctx)
+{
+ int i, j, b, k, inbit, obit;
+ uint32_t p;
+ const uint32_t *bits28, *bits24;
+
+ if (!ctx)
+ ctx = xmalloc(sizeof(*ctx));
+ const_ctx = cctx;
+
+#if USE_REPETITIVE_SPEEDUP
+ old_rawkey0 = old_rawkey1 = 0;
+ old_salt = 0;
+#endif
+ saltbits = 0;
+ bits28 = bits32 + 4;
+ bits24 = bits28 + 4;
+
+ /* Initialise the inverted key permutation. */
+ for (i = 0; i < 64; i++) {
+ inv_key_perm[i] = 255;
+ }
+
+ /*
+ * Invert the key permutation and initialise the inverted key
+ * compression permutation.
+ */
+ for (i = 0; i < 56; i++) {
+ inv_key_perm[key_perm[i] - 1] = (uint8_t)i;
+ inv_comp_perm[i] = 255;
+ }
+
+ /* Invert the key compression permutation. */
+ for (i = 0; i < 48; i++) {
+ inv_comp_perm[comp_perm[i] - 1] = (uint8_t)i;
+ }
+
+ /*
+ * Set up the OR-mask arrays for the initial and final permutations,
+ * and for the key initial and compression permutations.
+ */
+ for (k = 0; k < 8; k++) {
+ uint32_t il, ir;
+ uint32_t fl, fr;
+ for (i = 0; i < 256; i++) {
+#if USE_ip_mask
+ il = 0;
+ ir = 0;
+#endif
+ fl = 0;
+ fr = 0;
+ for (j = 0; j < 8; j++) {
+ inbit = 8 * k + j;
+ if (i & bits8[j]) {
+#if USE_ip_mask
+ obit = init_perm[inbit];
+ if (obit < 32)
+ il |= bits32[obit];
+ else
+ ir |= bits32[obit - 32];
+#endif
+ obit = final_perm[inbit];
+ if (obit < 32)
+ fl |= bits32[obit];
+ else
+ fr |= bits32[obit - 32];
+ }
+ }
+#if USE_ip_mask
+ ip_maskl[k][i] = il;
+ ip_maskr[k][i] = ir;
+#endif
+ fp_maskl[k][i] = fl;
+ fp_maskr[k][i] = fr;
+ }
+ for (i = 0; i < 128; i++) {
+ il = 0;
+ ir = 0;
+ for (j = 0; j < 7; j++) {
+ inbit = 8 * k + j;
+ if (i & bits8[j + 1]) {
+ obit = inv_key_perm[inbit];
+ if (obit == 255)
+ continue;
+ if (obit < 28)
+ il |= bits28[obit];
+ else
+ ir |= bits28[obit - 28];
+ }
+ }
+ key_perm_maskl[k][i] = il;
+ key_perm_maskr[k][i] = ir;
+ il = 0;
+ ir = 0;
+ for (j = 0; j < 7; j++) {
+ inbit = 7 * k + j;
+ if (i & bits8[j + 1]) {
+ obit = inv_comp_perm[inbit];
+ if (obit == 255)
+ continue;
+ if (obit < 24)
+ il |= bits24[obit];
+ else
+ ir |= bits24[obit - 24];
+ }
+ }
+ comp_maskl[k][i] = il;
+ comp_maskr[k][i] = ir;
+ }
+ }
+
+ /*
+ * Invert the P-box permutation, and convert into OR-masks for
+ * handling the output of the S-box arrays setup above.
+ */
+ for (i = 0; i < 32; i++)
+ un_pbox[pbox[i] - 1] = (uint8_t)i;
+
+ for (b = 0; b < 4; b++) {
+ for (i = 0; i < 256; i++) {
+ p = 0;
+ for (j = 0; j < 8; j++) {
+ if (i & bits8[j])
+ p |= bits32[un_pbox[8 * b + j]];
+ }
+ psbox[b][i] = p;
+ }
+ }
+
+ return ctx;
+}
+
+
+static void
+setup_salt(struct des_ctx *ctx, uint32_t salt)
+{
+ uint32_t obit, saltbit;
+ int i;
+
+#if USE_REPETITIVE_SPEEDUP
+ if (salt == old_salt)
+ return;
+ old_salt = salt;
+#endif
+
+ saltbits = 0;
+ saltbit = 1;
+ obit = 0x800000;
+ for (i = 0; i < 24; i++) {
+ if (salt & saltbit)
+ saltbits |= obit;
+ saltbit <<= 1;
+ obit >>= 1;
+ }
+}
+
+static void
+des_setkey(struct des_ctx *ctx, const char *key)
+{
+ uint32_t k0, k1, rawkey0, rawkey1;
+ int shifts, round;
+
+ rawkey0 = ntohl(*(const uint32_t *) key);
+ rawkey1 = ntohl(*(const uint32_t *) (key + 4));
+
+#if USE_REPETITIVE_SPEEDUP
+ if ((rawkey0 | rawkey1)
+ && rawkey0 == old_rawkey0
+ && rawkey1 == old_rawkey1
+ ) {
+ /*
+ * Already setup for this key.
+ * This optimisation fails on a zero key (which is weak and
+ * has bad parity anyway) in order to simplify the starting
+ * conditions.
+ */
+ return;
+ }
+ old_rawkey0 = rawkey0;
+ old_rawkey1 = rawkey1;
+#endif
+
+ /*
+ * Do key permutation and split into two 28-bit subkeys.
+ */
+ k0 = key_perm_maskl[0][rawkey0 >> 25]
+ | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
+ | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
+ | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
+ | key_perm_maskl[4][rawkey1 >> 25]
+ | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
+ | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
+ | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
+ k1 = key_perm_maskr[0][rawkey0 >> 25]
+ | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
+ | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
+ | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
+ | key_perm_maskr[4][rawkey1 >> 25]
+ | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
+ | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
+ | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
+ /*
+ * Rotate subkeys and do compression permutation.
+ */
+ shifts = 0;
+ for (round = 0; round < 16; round++) {
+ uint32_t t0, t1;
+
+ shifts += key_shifts[round];
+
+ t0 = (k0 << shifts) | (k0 >> (28 - shifts));
+ t1 = (k1 << shifts) | (k1 >> (28 - shifts));
+
+#if USE_de_keys
+ de_keysl[15 - round] =
+#endif
+ en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
+ | comp_maskl[1][(t0 >> 14) & 0x7f]
+ | comp_maskl[2][(t0 >> 7) & 0x7f]
+ | comp_maskl[3][t0 & 0x7f]
+ | comp_maskl[4][(t1 >> 21) & 0x7f]
+ | comp_maskl[5][(t1 >> 14) & 0x7f]
+ | comp_maskl[6][(t1 >> 7) & 0x7f]
+ | comp_maskl[7][t1 & 0x7f];
+
+#if USE_de_keys
+ de_keysr[15 - round] =
+#endif
+ en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
+ | comp_maskr[1][(t0 >> 14) & 0x7f]
+ | comp_maskr[2][(t0 >> 7) & 0x7f]
+ | comp_maskr[3][t0 & 0x7f]
+ | comp_maskr[4][(t1 >> 21) & 0x7f]
+ | comp_maskr[5][(t1 >> 14) & 0x7f]
+ | comp_maskr[6][(t1 >> 7) & 0x7f]
+ | comp_maskr[7][t1 & 0x7f];
+ }
+}
+
+
+static void
+do_des(struct des_ctx *ctx, /*uint32_t l_in, uint32_t r_in,*/ uint32_t *l_out, uint32_t *r_out, int count)
+{
+ const struct const_des_ctx *cctx = const_ctx;
+ /*
+ * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
+ */
+ uint32_t l, r, *kl, *kr;
+ uint32_t f = f; /* silence gcc */
+ uint32_t r48l, r48r;
+ int round;
+
+ /* Do initial permutation (IP). */
+#if USE_ip_mask
+ uint32_t l_in = 0;
+ uint32_t r_in = 0;
+ l = ip_maskl[0][l_in >> 24]
+ | ip_maskl[1][(l_in >> 16) & 0xff]
+ | ip_maskl[2][(l_in >> 8) & 0xff]
+ | ip_maskl[3][l_in & 0xff]
+ | ip_maskl[4][r_in >> 24]
+ | ip_maskl[5][(r_in >> 16) & 0xff]
+ | ip_maskl[6][(r_in >> 8) & 0xff]
+ | ip_maskl[7][r_in & 0xff];
+ r = ip_maskr[0][l_in >> 24]
+ | ip_maskr[1][(l_in >> 16) & 0xff]
+ | ip_maskr[2][(l_in >> 8) & 0xff]
+ | ip_maskr[3][l_in & 0xff]
+ | ip_maskr[4][r_in >> 24]
+ | ip_maskr[5][(r_in >> 16) & 0xff]
+ | ip_maskr[6][(r_in >> 8) & 0xff]
+ | ip_maskr[7][r_in & 0xff];
+#elif 0 /* -65 bytes (using the fact that l_in == r_in == 0) */
+ l = r = 0;
+ for (round = 0; round < 8; round++) {
+ l |= ip_maskl[round][0];
+ r |= ip_maskr[round][0];
+ }
+ bb_error_msg("l:%x r:%x", l, r); /* reports 0, 0 always! */
+#else /* using the fact that ip_maskX[] is constant (written to by des_init) */
+ l = r = 0;
+#endif
+
+ do {
+ /* Do each round. */
+ kl = en_keysl;
+ kr = en_keysr;
+ round = 16;
+ do {
+ /* Expand R to 48 bits (simulate the E-box). */
+ r48l = ((r & 0x00000001) << 23)
+ | ((r & 0xf8000000) >> 9)
+ | ((r & 0x1f800000) >> 11)
+ | ((r & 0x01f80000) >> 13)
+ | ((r & 0x001f8000) >> 15);
+
+ r48r = ((r & 0x0001f800) << 7)
+ | ((r & 0x00001f80) << 5)
+ | ((r & 0x000001f8) << 3)
+ | ((r & 0x0000001f) << 1)
+ | ((r & 0x80000000) >> 31);
+ /*
+ * Do salting for crypt() and friends, and
+ * XOR with the permuted key.
+ */
+ f = (r48l ^ r48r) & saltbits;
+ r48l ^= f ^ *kl++;
+ r48r ^= f ^ *kr++;
+ /*
+ * Do sbox lookups (which shrink it back to 32 bits)
+ * and do the pbox permutation at the same time.
+ */
+ f = psbox[0][m_sbox[0][r48l >> 12]]
+ | psbox[1][m_sbox[1][r48l & 0xfff]]
+ | psbox[2][m_sbox[2][r48r >> 12]]
+ | psbox[3][m_sbox[3][r48r & 0xfff]];
+ /* Now that we've permuted things, complete f(). */
+ f ^= l;
+ l = r;
+ r = f;
+ } while (--round);
+ r = l;
+ l = f;
+ } while (--count);
+
+ /* Do final permutation (inverse of IP). */
+ *l_out = fp_maskl[0][l >> 24]
+ | fp_maskl[1][(l >> 16) & 0xff]
+ | fp_maskl[2][(l >> 8) & 0xff]
+ | fp_maskl[3][l & 0xff]
+ | fp_maskl[4][r >> 24]
+ | fp_maskl[5][(r >> 16) & 0xff]
+ | fp_maskl[6][(r >> 8) & 0xff]
+ | fp_maskl[7][r & 0xff];
+ *r_out = fp_maskr[0][l >> 24]
+ | fp_maskr[1][(l >> 16) & 0xff]
+ | fp_maskr[2][(l >> 8) & 0xff]
+ | fp_maskr[3][l & 0xff]
+ | fp_maskr[4][r >> 24]
+ | fp_maskr[5][(r >> 16) & 0xff]
+ | fp_maskr[6][(r >> 8) & 0xff]
+ | fp_maskr[7][r & 0xff];
+}
+
+#define DES_OUT_BUFSIZE 21
+
+static void
+to64_msb_first(char *s, unsigned v)
+{
+#if 0
+ *s++ = ascii64[(v >> 18) & 0x3f]; /* bits 23..18 */
+ *s++ = ascii64[(v >> 12) & 0x3f]; /* bits 17..12 */
+ *s++ = ascii64[(v >> 6) & 0x3f]; /* bits 11..6 */
+ *s = ascii64[v & 0x3f]; /* bits 5..0 */
+#endif
+ *s++ = i64c(v >> 18); /* bits 23..18 */
+ *s++ = i64c(v >> 12); /* bits 17..12 */
+ *s++ = i64c(v >> 6); /* bits 11..6 */
+ *s = i64c(v); /* bits 5..0 */
+}
+
+static char *
+NOINLINE
+des_crypt(struct des_ctx *ctx, char output[DES_OUT_BUFSIZE],
+ const unsigned char *key, const unsigned char *setting)
+{
+ uint32_t salt, r0, r1, keybuf[2];
+ uint8_t *q;
+
+ /*
+ * Copy the key, shifting each character up by one bit
+ * and padding with zeros.
+ */
+ q = (uint8_t *)keybuf;
+ while (q - (uint8_t *)keybuf != 8) {
+ *q = *key << 1;
+ if (*q)
+ key++;
+ q++;
+ }
+ des_setkey(ctx, (char *)keybuf);
+
+ /*
+ * setting - 2 bytes of salt
+ * key - up to 8 characters
+ */
+ salt = (ascii_to_bin(setting[1]) << 6)
+ | ascii_to_bin(setting[0]);
+
+ output[0] = setting[0];
+ /*
+ * If the encrypted password that the salt was extracted from
+ * is only 1 character long, the salt will be corrupted. We
+ * need to ensure that the output string doesn't have an extra
+ * NUL in it!
+ */
+ output[1] = setting[1] ? setting[1] : output[0];
+
+ setup_salt(ctx, salt);
+ /* Do it. */
+ do_des(ctx, /*0, 0,*/ &r0, &r1, 25 /* count */);
+
+ /* Now encode the result. */
+#if 0
+{
+ uint32_t l = (r0 >> 8);
+ q = (uint8_t *)output + 2;
+ *q++ = ascii64[(l >> 18) & 0x3f]; /* bits 31..26 of r0 */
+ *q++ = ascii64[(l >> 12) & 0x3f]; /* bits 25..20 of r0 */
+ *q++ = ascii64[(l >> 6) & 0x3f]; /* bits 19..14 of r0 */
+ *q++ = ascii64[l & 0x3f]; /* bits 13..8 of r0 */
+ l = ((r0 << 16) | (r1 >> 16));
+ *q++ = ascii64[(l >> 18) & 0x3f]; /* bits 7..2 of r0 */
+ *q++ = ascii64[(l >> 12) & 0x3f]; /* bits 1..2 of r0 and 31..28 of r1 */
+ *q++ = ascii64[(l >> 6) & 0x3f]; /* bits 27..22 of r1 */
+ *q++ = ascii64[l & 0x3f]; /* bits 21..16 of r1 */
+ l = r1 << 2;
+ *q++ = ascii64[(l >> 12) & 0x3f]; /* bits 15..10 of r1 */
+ *q++ = ascii64[(l >> 6) & 0x3f]; /* bits 9..4 of r1 */
+ *q++ = ascii64[l & 0x3f]; /* bits 3..0 of r1 + 00 */
+ *q = 0;
+}
+#else
+ /* Each call takes low-order 24 bits and stores 4 chars */
+ /* bits 31..8 of r0 */
+ to64_msb_first(output + 2, (r0 >> 8));
+ /* bits 7..0 of r0 and 31..16 of r1 */
+ to64_msb_first(output + 6, (r0 << 16) | (r1 >> 16));
+ /* bits 15..0 of r1 and two zero bits (plus extra zero byte) */
+ to64_msb_first(output + 10, (r1 << 8));
+ /* extra zero byte is encoded as '.', fixing it */
+ output[13] = '\0';
+#endif
+
+ return output;
+}
+
+#undef USE_PRECOMPUTED_u_sbox
+#undef USE_REPETITIVE_SPEEDUP
+#undef USE_ip_mask
+#undef USE_de_keys
+
+#undef C
+#undef init_perm
+#undef final_perm
+#undef m_sbox
+#undef D
+#undef const_ctx
+#undef saltbits
+#undef old_salt
+#undef old_rawkey0
+#undef old_rawkey1
+#undef un_pbox
+#undef inv_comp_perm
+#undef inv_key_perm
+#undef en_keysl
+#undef en_keysr
+#undef de_keysl
+#undef de_keysr
+#undef ip_maskl
+#undef ip_maskr
+#undef fp_maskl
+#undef fp_maskr
+#undef key_perm_maskl
+#undef key_perm_maskr
+#undef comp_maskl
+#undef comp_maskr
+#undef psbox