summaryrefslogtreecommitdiff
path: root/release/src/router/matrixssl/src/crypto/peersec/mpi.c
diff options
context:
space:
mode:
Diffstat (limited to 'release/src/router/matrixssl/src/crypto/peersec/mpi.c')
-rw-r--r--release/src/router/matrixssl/src/crypto/peersec/mpi.c3667
1 files changed, 0 insertions, 3667 deletions
diff --git a/release/src/router/matrixssl/src/crypto/peersec/mpi.c b/release/src/router/matrixssl/src/crypto/peersec/mpi.c
deleted file mode 100644
index c37353d3..00000000
--- a/release/src/router/matrixssl/src/crypto/peersec/mpi.c
+++ /dev/null
@@ -1,3667 +0,0 @@
-/*
- * mpi.c
- * Release $Name: MATRIXSSL_1_8_8_OPEN $
- *
- * multiple-precision integer library
- */
-/*
- * Copyright (c) PeerSec Networks, 2002-2009. All Rights Reserved.
- * The latest version of this code is available at http://www.matrixssl.org
- *
- * This software is open source; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This General Public License does NOT permit incorporating this software
- * into proprietary programs. If you are unable to comply with the GPL, a
- * commercial license for this software may be purchased from PeerSec Networks
- * at http://www.peersec.com
- *
- * This program is distributed in WITHOUT ANY WARRANTY; without even the
- * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- * See the GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- * http://www.gnu.org/copyleft/gpl.html
- */
-/******************************************************************************/
-
-#include "../cryptoLayer.h"
-#include <stdarg.h>
-
-#ifndef USE_MPI2
-
-static int32 mp_exptmod_fast (psPool_t *pool, mp_int * G, mp_int * X,
- mp_int * P, mp_int * Y, int32 redmode);
-
-/******************************************************************************/
-/*
- FUTURE
- 1. Convert the mp_init and mp_clear functions to not use malloc + free,
- but to use static storage within the bignum variable instead - but
- how to handle grow()? Maybe use a simple memory allocator
- 2. verify stack usage of all functions and use of MP_LOW_MEM:
- fast_mp_montgomery_reduce
- fast_s_mp_mul_digs
- fast_s_mp_sqr
- fast_s_mp_mul_high_digs
- 3. HAC stands for Handbook of Applied Cryptography
- http://www.cacr.math.uwaterloo.ca/hac/
-*/
-/******************************************************************************/
-/*
- Utility functions
-*/
-void psZeromem(void *dst, size_t len)
-{
- unsigned char *mem = (unsigned char *)dst;
-
- if (dst == NULL) {
- return;
- }
- while (len-- > 0) {
- *mem++ = 0;
- }
-}
-
-void psBurnStack(unsigned long len)
-{
- unsigned char buf[32];
-
- psZeromem(buf, sizeof(buf));
- if (len > (unsigned long)sizeof(buf)) {
- psBurnStack(len - sizeof(buf));
- }
-}
-
-/******************************************************************************/
-/*
- Multiple precision integer functions
- Note: we don't use va_args here to prevent portability issues.
-*/
-int32 _mp_init_multi(psPool_t *pool, mp_int *mp0, mp_int *mp1, mp_int *mp2,
- mp_int *mp3, mp_int *mp4, mp_int *mp5,
- mp_int *mp6, mp_int *mp7)
-{
- mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
- int32 n = 0; /* Number of ok inits */
- mp_int *tempArray[9];
-
- tempArray[0] = mp0;
- tempArray[1] = mp1;
- tempArray[2] = mp2;
- tempArray[3] = mp3;
- tempArray[4] = mp4;
- tempArray[5] = mp5;
- tempArray[6] = mp6;
- tempArray[7] = mp7;
- tempArray[8] = NULL;
-
- while (tempArray[n] != NULL) {
- if (mp_init(pool, tempArray[n]) != MP_OKAY) {
- res = MP_MEM;
- break;
- }
- n++;
- }
-
- if (res == MP_MEM) {
- n = 0;
- while (tempArray[n] != NULL) {
- mp_clear(tempArray[n]);
- n++;
- }
- }
- return res; /* Assumed ok, if error flagged above. */
-}
-/******************************************************************************/
-/*
- Reads a unsigned char array, assumes the msb is stored first [big endian]
- */
-int32 mp_read_unsigned_bin (mp_int * a, unsigned char *b, int32 c)
-{
- int32 res;
-
-/*
- Make sure there are at least two digits.
- */
- if (a->alloc < 2) {
- if ((res = mp_grow(a, 2)) != MP_OKAY) {
- return res;
- }
- }
-
-/*
- Zero the int32.
- */
- mp_zero (a);
-
-/*
- read the bytes in
- */
- while (c-- > 0) {
- if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
- return res;
- }
-
-#ifndef MP_8BIT
- a->dp[0] |= *b++;
- a->used += 1;
-#else
- a->dp[0] = (*b & MP_MASK);
- a->dp[1] |= ((*b++ >> 7U) & 1);
- a->used += 2;
-#endif /* MP_8BIT */
- }
- mp_clamp (a);
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- Compare two ints (signed)
- */
-int32 mp_cmp (mp_int * a, mp_int * b)
-{
-/*
- compare based on sign
- */
- if (a->sign != b->sign) {
- if (a->sign == MP_NEG) {
- return MP_LT;
- } else {
- return MP_GT;
- }
- }
-
-/*
- compare digits
- */
- if (a->sign == MP_NEG) {
- /* if negative compare opposite direction */
- return mp_cmp_mag(b, a);
- } else {
- return mp_cmp_mag(a, b);
- }
-}
-
-/******************************************************************************/
-/*
- Store in unsigned [big endian] format.
-*/
-int32 mp_to_unsigned_bin(psPool_t *pool, mp_int * a, unsigned char *b)
-{
- int32 x, res;
- mp_int t;
-
- if ((res = mp_init_copy(pool, &t, a)) != MP_OKAY) {
- return res;
- }
-
- x = 0;
- while (mp_iszero (&t) == 0) {
-#ifndef MP_8BIT
- b[x++] = (unsigned char) (t.dp[0] & 255);
-#else
- b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
-#endif /* MP_8BIT */
- if ((res = mp_div_2d (pool, &t, 8, &t, NULL)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- }
- bn_reverse (b, x);
- mp_clear (&t);
- return MP_OKAY;
-}
-
-void _mp_clear_multi(mp_int *mp0, mp_int *mp1, mp_int *mp2, mp_int *mp3,
- mp_int *mp4, mp_int *mp5, mp_int *mp6, mp_int *mp7)
-{
- int32 n = 0; /* Number of ok inits */
-
- mp_int *tempArray[9];
-
- tempArray[0] = mp0;
- tempArray[1] = mp1;
- tempArray[2] = mp2;
- tempArray[3] = mp3;
- tempArray[4] = mp4;
- tempArray[5] = mp5;
- tempArray[6] = mp6;
- tempArray[7] = mp7;
- tempArray[8] = NULL;
-
- for (n = 0; tempArray[n] != NULL; n++) {
- mp_clear(tempArray[n]);
- }
-}
-
-/******************************************************************************/
-/*
- Init a new mp_int.
-*/
-int32 mp_init (psPool_t *pool, mp_int * a)
-{
- int32 i;
-/*
- allocate memory required and clear it
- */
- a->dp = OPT_CAST(mp_digit) psMalloc(pool, sizeof (mp_digit) * MP_PREC);
- if (a->dp == NULL) {
- return MP_MEM;
- }
-
-/*
- set the digits to zero
- */
- for (i = 0; i < MP_PREC; i++) {
- a->dp[i] = 0;
- }
-/*
- set the used to zero, allocated digits to the default precision and sign
- to positive
- */
- a->used = 0;
- a->alloc = MP_PREC;
- a->sign = MP_ZPOS;
-
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- clear one (frees).
- */
-void mp_clear (mp_int * a)
-{
- int32 i;
-/*
- only do anything if a hasn't been freed previously
- */
- if (a->dp != NULL) {
-/*
- first zero the digits
- */
- for (i = 0; i < a->used; i++) {
- a->dp[i] = 0;
- }
-
- /* free ram */
- psFree (a->dp);
-
-/*
- reset members to make debugging easier
- */
- a->dp = NULL;
- a->alloc = a->used = 0;
- a->sign = MP_ZPOS;
- }
-}
-
-/******************************************************************************/
-/*
- Get the size for an unsigned equivalent.
- */
-int32 mp_unsigned_bin_size (mp_int * a)
-{
- int32 size = mp_count_bits (a);
-
- return (size / 8 + ((size & 7) != 0 ? 1 : 0));
-}
-
-/******************************************************************************/
-/*
- Trim unused digits
-
- This is used to ensure that leading zero digits are trimed and the
- leading "used" digit will be non-zero. Typically very fast. Also fixes
- the sign if there are no more leading digits
-*/
-void mp_clamp (mp_int * a)
-{
-/*
- decrease used while the most significant digit is zero.
- */
- while (a->used > 0 && a->dp[a->used - 1] == 0) {
- --(a->used);
- }
-
-/*
- reset the sign flag if used == 0
- */
- if (a->used == 0) {
- a->sign = MP_ZPOS;
- }
-}
-
-/******************************************************************************/
-/*
- Shift left by a certain bit count.
- */
-int32 mp_mul_2d (mp_int * a, int32 b, mp_int * c)
-{
- mp_digit d;
- int32 res;
-
-/*
- Copy
- */
- if (a != c) {
- if ((res = mp_copy (a, c)) != MP_OKAY) {
- return res;
- }
- }
-
- if (c->alloc < (int32)(c->used + b/DIGIT_BIT + 1)) {
- if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
- return res;
- }
- }
-
-/*
- Shift by as many digits in the bit count
- */
- if (b >= (int32)DIGIT_BIT) {
- if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
- return res;
- }
- }
-
-/*
- shift any bit count < DIGIT_BIT
- */
- d = (mp_digit) (b % DIGIT_BIT);
- if (d != 0) {
- register mp_digit *tmpc, shift, mask, r, rr;
- register int32 x;
-
-/*
- bitmask for carries
- */
- mask = (((mp_digit)1) << d) - 1;
-
-/*
- shift for msbs
- */
- shift = DIGIT_BIT - d;
-
- /* alias */
- tmpc = c->dp;
-
- /* carry */
- r = 0;
- for (x = 0; x < c->used; x++) {
-/*
- get the higher bits of the current word
- */
- rr = (*tmpc >> shift) & mask;
-
-/*
- shift the current word and OR in the carry
- */
- *tmpc = ((*tmpc << d) | r) & MP_MASK;
- ++tmpc;
-
-/*
- set the carry to the carry bits of the current word
- */
- r = rr;
- }
-
-/*
- set final carry
- */
- if (r != 0) {
- c->dp[(c->used)++] = r;
- }
- }
- mp_clamp (c);
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- Set to zero.
- */
-void mp_zero (mp_int * a)
-{
- int n;
- mp_digit *tmp;
-
- a->sign = MP_ZPOS;
- a->used = 0;
-
- tmp = a->dp;
- for (n = 0; n < a->alloc; n++) {
- *tmp++ = 0;
- }
-}
-
-#ifdef MP_LOW_MEM
-#define TAB_SIZE 32
-#else
-#define TAB_SIZE 256
-#endif /* MP_LOW_MEM */
-
-/******************************************************************************/
-/*
- Compare maginitude of two ints (unsigned).
- */
-int32 mp_cmp_mag (mp_int * a, mp_int * b)
-{
- int32 n;
- mp_digit *tmpa, *tmpb;
-
-/*
- compare based on # of non-zero digits
- */
- if (a->used > b->used) {
- return MP_GT;
- }
-
- if (a->used < b->used) {
- return MP_LT;
- }
-
- /* alias for a */
- tmpa = a->dp + (a->used - 1);
-
- /* alias for b */
- tmpb = b->dp + (a->used - 1);
-
-/*
- compare based on digits
- */
- for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
- if (*tmpa > *tmpb) {
- return MP_GT;
- }
-
- if (*tmpa < *tmpb) {
- return MP_LT;
- }
- }
- return MP_EQ;
-}
-
-/******************************************************************************/
-/*
- computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
-
- Uses a left-to-right k-ary sliding window to compute the modular
- exponentiation. The value of k changes based on the size of the exponent.
-
- Uses Montgomery or Diminished Radix reduction [whichever appropriate]
-*/
-int32 mp_exptmod(psPool_t *pool, mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
-{
-
-/*
- modulus P must be positive
- */
- if (P->sign == MP_NEG) {
- return MP_VAL;
- }
-
-/*
- if exponent X is negative we have to recurse
- */
- if (X->sign == MP_NEG) {
- mp_int tmpG, tmpX;
- int32 err;
-
-/*
- first compute 1/G mod P
- */
- if ((err = mp_init(pool, &tmpG)) != MP_OKAY) {
- return err;
- }
- if ((err = mp_invmod(pool, G, P, &tmpG)) != MP_OKAY) {
- mp_clear(&tmpG);
- return err;
- }
-
-/*
- now get |X|
- */
- if ((err = mp_init(pool, &tmpX)) != MP_OKAY) {
- mp_clear(&tmpG);
- return err;
- }
- if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
- mp_clear(&tmpG);
- mp_clear(&tmpX);
- return err;
- }
-
-/*
- and now compute (1/G)**|X| instead of G**X [X < 0]
- */
- err = mp_exptmod(pool, &tmpG, &tmpX, P, Y);
- mp_clear(&tmpG);
- mp_clear(&tmpX);
- return err;
- }
-
-/*
- if the modulus is odd or dr != 0 use the fast method
- */
- if (mp_isodd (P) == 1) {
- return mp_exptmod_fast (pool, G, X, P, Y, 0);
- } else {
-/*
- no exptmod for evens
- */
- return MP_VAL;
- }
-}
-
-/******************************************************************************/
-/*
- Call only from mp_exptmod to make sure this fast version qualifies
-*/
-static int32 mp_exptmod_fast(psPool_t *pool, mp_int * G, mp_int * X,
- mp_int * P, mp_int * Y, int32 redmode)
-{
- mp_int M[TAB_SIZE], res;
- mp_digit buf, mp;
- int32 err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
-
-
-/*
- use a pointer to the reduction algorithm. This allows us to use
- one of many reduction algorithms without modding the guts of
- the code with if statements everywhere.
- */
- int32 (*redux)(mp_int*,mp_int*,mp_digit);
-
-/*
- find window size
- */
- x = mp_count_bits (X);
- if (x <= 7) {
- winsize = 2;
- } else if (x <= 36) {
- winsize = 3;
- } else if (x <= 140) {
- winsize = 4;
- } else if (x <= 450) {
- winsize = 5;
- } else if (x <= 1303) {
- winsize = 6;
- } else if (x <= 3529) {
- winsize = 7;
- } else {
- winsize = 8;
- }
-
-#ifdef MP_LOW_MEM
- if (winsize > 5) {
- winsize = 5;
- }
-#endif
-
-/*
- init M array
- init first cell
- */
- if ((err = mp_init(pool, &M[1])) != MP_OKAY) {
- return err;
- }
-
-/*
- now init the second half of the array
- */
- for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
- if ((err = mp_init(pool, &M[x])) != MP_OKAY) {
- for (y = 1<<(winsize-1); y < x; y++) {
- mp_clear(&M[y]);
- }
- mp_clear(&M[1]);
- return err;
- }
- }
-
-
-/*
- now setup montgomery
- */
- if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY) {
- goto LBL_M;
- }
-
-/*
- automatically pick the comba one if available
- */
- if (((P->used * 2 + 1) < MP_WARRAY) &&
- P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- redux = fast_mp_montgomery_reduce;
- } else {
-/*
- use slower baseline Montgomery method
- */
- redux = mp_montgomery_reduce;
- }
-
-/*
- setup result
- */
- if ((err = mp_init(pool, &res)) != MP_OKAY) {
- goto LBL_M;
- }
-
-/*
- create M table. The first half of the table is not computed
- though accept for M[0] and M[1]
-*/
-
-/*
- now we need R mod m
- */
- if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) {
- goto LBL_RES;
- }
-
-/*
- now set M[1] to G * R mod m
- */
- if ((err = mp_mulmod(pool, G, &res, P, &M[1])) != MP_OKAY) {
- goto LBL_RES;
- }
-
-/*
- compute the value at M[1<<(winsize-1)] by squaring
- M[1] (winsize-1) times
-*/
- if ((err = mp_copy(&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
- goto LBL_RES;
- }
-
- for (x = 0; x < (winsize - 1); x++) {
- if ((err = mp_sqr(pool, &M[1 << (winsize - 1)],
- &M[1 << (winsize - 1)])) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux(&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
-
-/*
- create upper table
- */
- for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
- if ((err = mp_mul(pool, &M[x - 1], &M[1], &M[x])) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux(&M[x], P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
-
-/*
- set initial mode and bit cnt
- */
- mode = 0;
- bitcnt = 1;
- buf = 0;
- digidx = X->used - 1;
- bitcpy = 0;
- bitbuf = 0;
-
- for (;;) {
-/*
- grab next digit as required
- */
- if (--bitcnt == 0) {
- /* if digidx == -1 we are out of digits so break */
- if (digidx == -1) {
- break;
- }
- /* read next digit and reset bitcnt */
- buf = X->dp[digidx--];
- bitcnt = (int)DIGIT_BIT;
- }
-
- /* grab the next msb from the exponent */
- y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
- buf <<= (mp_digit)1;
-
-/*
- if the bit is zero and mode == 0 then we ignore it
- These represent the leading zero bits before the first 1 bit
- in the exponent. Technically this opt is not required but it
- does lower the # of trivial squaring/reductions used
-*/
- if (mode == 0 && y == 0) {
- continue;
- }
-
-/*
- if the bit is zero and mode == 1 then we square
- */
- if (mode == 1 && y == 0) {
- if ((err = mp_sqr (pool, &res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- continue;
- }
-
-/*
- else we add it to the window
- */
- bitbuf |= (y << (winsize - ++bitcpy));
- mode = 2;
-
- if (bitcpy == winsize) {
-/*
- ok window is filled so square as required and multiply
- square first
- */
- for (x = 0; x < winsize; x++) {
- if ((err = mp_sqr(pool, &res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux(&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
-
- /* then multiply */
- if ((err = mp_mul(pool, &res, &M[bitbuf], &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux(&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
-
-/*
- empty window and reset
- */
- bitcpy = 0;
- bitbuf = 0;
- mode = 1;
- }
- }
-
-/*
- if bits remain then square/multiply
- */
- if (mode == 2 && bitcpy > 0) {
- /* square then multiply if the bit is set */
- for (x = 0; x < bitcpy; x++) {
- if ((err = mp_sqr(pool, &res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux(&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
-
-/*
- get next bit of the window
- */
- bitbuf <<= 1;
- if ((bitbuf & (1 << winsize)) != 0) {
-/*
- then multiply
- */
- if ((err = mp_mul(pool, &res, &M[1], &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux(&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
- }
- }
-
-/*
- fixup result if Montgomery reduction is used
- recall that any value in a Montgomery system is
- actually multiplied by R mod n. So we have
- to reduce one more time to cancel out the factor of R.
-*/
- if ((err = redux(&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
-
-/*
- swap res with Y
- */
- mp_exch(&res, Y);
- err = MP_OKAY;
-LBL_RES:mp_clear(&res);
-LBL_M:
- mp_clear(&M[1]);
- for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
- mp_clear(&M[x]);
- }
- return err;
-}
-
-/******************************************************************************/
-/*
- Grow as required
- */
-int32 mp_grow (mp_int * a, int32 size)
-{
- int32 i;
- mp_digit *tmp;
-
-/*
- If the alloc size is smaller alloc more ram.
- */
- if (a->alloc < size) {
-/*
- ensure there are always at least MP_PREC digits extra on top
- */
- size += (MP_PREC * 2) - (size % MP_PREC);
-
-/*
- Reallocate the array a->dp
-
- We store the return in a temporary variable in case the operation
- failed we don't want to overwrite the dp member of a.
-*/
- tmp = OPT_CAST(mp_digit) psRealloc(a->dp, sizeof (mp_digit) * size);
- if (tmp == NULL) {
-/*
- reallocation failed but "a" is still valid [can be freed]
- */
- return MP_MEM;
- }
-
-/*
- reallocation succeeded so set a->dp
- */
- a->dp = tmp;
-
-/*
- zero excess digits
- */
- i = a->alloc;
- a->alloc = size;
- for (; i < a->alloc; i++) {
- a->dp[i] = 0;
- }
- }
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- b = |a|
-
- Simple function copies the input and fixes the sign to positive
-*/
-int32 mp_abs (mp_int * a, mp_int * b)
-{
- int32 res;
-
-/*
- copy a to b
- */
- if (a != b) {
- if ((res = mp_copy (a, b)) != MP_OKAY) {
- return res;
- }
- }
-
-/*
- Force the sign of b to positive
- */
- b->sign = MP_ZPOS;
-
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- Creates "a" then copies b into it
- */
-int32 mp_init_copy(psPool_t *pool, mp_int * a, mp_int * b)
-{
- int32 res;
-
- if ((res = mp_init(pool, a)) != MP_OKAY) {
- return res;
- }
- return mp_copy (b, a);
-}
-
-/******************************************************************************/
-/*
- Reverse an array, used for radix code
- */
-void bn_reverse (unsigned char *s, int32 len)
-{
- int32 ix, iy;
- unsigned char t;
-
- ix = 0;
- iy = len - 1;
- while (ix < iy) {
- t = s[ix];
- s[ix] = s[iy];
- s[iy] = t;
- ++ix;
- --iy;
- }
-}
-
-/******************************************************************************/
-/*
- Shift right by a certain bit count (store quotient in c, optional
- remainder in d)
- */
-int32 mp_div_2d(psPool_t *pool, mp_int * a, int32 b, mp_int * c, mp_int * d)
-{
- mp_digit D, r, rr;
- int32 x, res;
- mp_int t;
-
-/*
- If the shift count is <= 0 then we do no work
- */
- if (b <= 0) {
- res = mp_copy (a, c);
- if (d != NULL) {
- mp_zero (d);
- }
- return res;
- }
-
- if ((res = mp_init(pool, &t)) != MP_OKAY) {
- return res;
- }
-
-/*
- Get the remainder
- */
- if (d != NULL) {
- if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- }
-
- /* copy */
- if ((res = mp_copy (a, c)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
-
-/*
- Shift by as many digits in the bit count
- */
- if (b >= (int32)DIGIT_BIT) {
- mp_rshd (c, b / DIGIT_BIT);
- }
-
- /* shift any bit count < DIGIT_BIT */
- D = (mp_digit) (b % DIGIT_BIT);
- if (D != 0) {
- register mp_digit *tmpc, mask, shift;
-
- /* mask */
- mask = (((mp_digit)1) << D) - 1;
-
- /* shift for lsb */
- shift = DIGIT_BIT - D;
-
- /* alias */
- tmpc = c->dp + (c->used - 1);
-
- /* carry */
- r = 0;
- for (x = c->used - 1; x >= 0; x--) {
-/*
- Get the lower bits of this word in a temp.
- */
- rr = *tmpc & mask;
-
-/*
- shift the current word and mix in the carry bits from the previous word
- */
- *tmpc = (*tmpc >> D) | (r << shift);
- --tmpc;
-
-/*
- set the carry to the carry bits of the current word found above
- */
- r = rr;
- }
- }
- mp_clamp (c);
- if (d != NULL) {
- mp_exch (&t, d);
- }
- mp_clear (&t);
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- copy, b = a
- */
-int32 mp_copy (mp_int * a, mp_int * b)
-{
- int32 res, n;
-
-/*
- If dst == src do nothing
- */
- if (a == b) {
- return MP_OKAY;
- }
-
-/*
- Grow dest
- */
- if (b->alloc < a->used) {
- if ((res = mp_grow (b, a->used)) != MP_OKAY) {
- return res;
- }
- }
-
-/*
- Zero b and copy the parameters over
- */
- {
- register mp_digit *tmpa, *tmpb;
-
- /* pointer aliases */
- /* source */
- tmpa = a->dp;
-
- /* destination */
- tmpb = b->dp;
-
- /* copy all the digits */
- for (n = 0; n < a->used; n++) {
- *tmpb++ = *tmpa++;
- }
-
- /* clear high digits */
- for (; n < b->used; n++) {
- *tmpb++ = 0;
- }
- }
-
-/*
- copy used count and sign
- */
- b->used = a->used;
- b->sign = a->sign;
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- Returns the number of bits in an int32
- */
-int32 mp_count_bits (mp_int * a)
-{
- int32 r;
- mp_digit q;
-
-/*
- Shortcut
- */
- if (a->used == 0) {
- return 0;
- }
-
-/*
- Get number of digits and add that.
- */
- r = (a->used - 1) * DIGIT_BIT;
-
-/*
- Take the last digit and count the bits in it.
- */
- q = a->dp[a->used - 1];
- while (q > ((mp_digit) 0)) {
- ++r;
- q >>= ((mp_digit) 1);
- }
- return r;
-}
-
-/******************************************************************************/
-/*
- Shift left a certain amount of digits.
- */
-int32 mp_lshd (mp_int * a, int32 b)
-{
- int32 x, res;
-
-/*
- If its less than zero return.
- */
- if (b <= 0) {
- return MP_OKAY;
- }
-
-/*
- Grow to fit the new digits.
- */
- if (a->alloc < a->used + b) {
- if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
- return res;
- }
- }
-
- {
- register mp_digit *top, *bottom;
-
-/*
- Increment the used by the shift amount then copy upwards.
- */
- a->used += b;
-
- /* top */
- top = a->dp + a->used - 1;
-
- /* base */
- bottom = a->dp + a->used - 1 - b;
-
-/*
- Much like mp_rshd this is implemented using a sliding window
- except the window goes the otherway around. Copying from
- the bottom to the top. see bn_mp_rshd.c for more info.
- */
- for (x = a->used - 1; x >= b; x--) {
- *top-- = *bottom--;
- }
-
- /* zero the lower digits */
- top = a->dp;
- for (x = 0; x < b; x++) {
- *top++ = 0;
- }
- }
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- Set to a digit.
- */
-void mp_set (mp_int * a, mp_digit b)
-{
- mp_zero (a);
- a->dp[0] = b & MP_MASK;
- a->used = (a->dp[0] != 0) ? 1 : 0;
-}
-
-/******************************************************************************/
-/*
- Swap the elements of two integers, for cases where you can't simply swap
- the mp_int pointers around
-*/
-void mp_exch (mp_int * a, mp_int * b)
-{
- mp_int t;
-
- t = *a;
- *a = *b;
- *b = t;
-}
-
-/******************************************************************************/
-/*
- High level multiplication (handles sign)
- */
-int32 mp_mul(psPool_t *pool, mp_int * a, mp_int * b, mp_int * c)
-{
- int32 res, neg;
- int32 digs = a->used + b->used + 1;
-
- neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
-
-/* Can we use the fast multiplier?
-
- The fast multiplier can be used if the output will have less than
- MP_WARRAY digits and the number of digits won't affect carry propagation
-*/
- if ((digs < MP_WARRAY) && MIN(a->used, b->used) <=
- (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- res = fast_s_mp_mul_digs(pool, a, b, c, digs);
- } else {
- res = s_mp_mul(pool, a, b, c);
- }
- c->sign = (c->used > 0) ? neg : MP_ZPOS;
- return res;
-}
-
-/******************************************************************************/
-/*
- c = a mod b, 0 <= c < b
- */
-int32 mp_mod(psPool_t *pool, mp_int * a, mp_int * b, mp_int * c)
-{
- mp_int t;
- int32 res;
-
- if ((res = mp_init(pool, &t)) != MP_OKAY) {
- return res;
- }
-
- if ((res = mp_div (pool, a, b, NULL, &t)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
-
- if (t.sign != b->sign) {
- res = mp_add (b, &t, c);
- } else {
- res = MP_OKAY;
- mp_exch (&t, c);
- }
-
- mp_clear (&t);
- return res;
-}
-
-/******************************************************************************/
-/*
- shifts with subtractions when the result is greater than b.
-
- The method is slightly modified to shift B unconditionally upto just under
- the leading bit of b. This saves alot of multiple precision shifting.
-*/
-int32 mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
-{
- int32 x, bits, res;
-
-/*
- How many bits of last digit does b use
- */
- bits = mp_count_bits (b) % DIGIT_BIT;
-
- if (b->used > 1) {
- if ((res = mp_2expt(a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
- return res;
- }
- } else {
- mp_set(a, 1);
- bits = 1;
- }
-
-/*
- Now compute C = A * B mod b
- */
- for (x = bits - 1; x < (int32)DIGIT_BIT; x++) {
- if ((res = mp_mul_2(a, a)) != MP_OKAY) {
- return res;
- }
- if (mp_cmp_mag(a, b) != MP_LT) {
- if ((res = s_mp_sub(a, b, a)) != MP_OKAY) {
- return res;
- }
- }
- }
-
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- d = a * b (mod c)
- */
-int32 mp_mulmod(psPool_t *pool, mp_int * a, mp_int * b, mp_int * c, mp_int * d)
-{
- int32 res;
- mp_int t;
-
- if ((res = mp_init(pool, &t)) != MP_OKAY) {
- return res;
- }
-
- if ((res = mp_mul (pool, a, b, &t)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- res = mp_mod (pool, &t, c, d);
- mp_clear (&t);
- return res;
-}
-
-/******************************************************************************/
-/*
- Computes b = a*a
- */
-#ifdef USE_SMALL_WORD
-int32 mp_sqr (psPool_t *pool, mp_int * a, mp_int * b)
-{
- int32 res;
-
-/*
- Can we use the fast comba multiplier?
- */
- if ((a->used * 2 + 1) < MP_WARRAY && a->used <
- (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
- res = fast_s_mp_sqr (pool, a, b);
- } else {
- res = s_mp_sqr (pool, a, b);
- }
- b->sign = MP_ZPOS;
- return res;
-}
-#endif /* USE_SMALL_WORD */
-
-/******************************************************************************/
-/*
- Computes xR**-1 == x (mod N) via Montgomery Reduction.
-
- This is an optimized implementation of montgomery_reduce
- which uses the comba method to quickly calculate the columns of the
- reduction.
-
- Based on Algorithm 14.32 on pp.601 of HAC.
-*/
-
-int32 fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
-{
- int32 ix, res, olduse;
- mp_word W[MP_WARRAY];
-
-/*
- Get old used count
- */
- olduse = x->used;
-
-/*
- Grow a as required
- */
- if (x->alloc < n->used + 1) {
- if ((res = mp_grow(x, n->used + 1)) != MP_OKAY) {
- return res;
- }
- }
-
-/*
- First we have to get the digits of the input into
- an array of double precision words W[...]
- */
- {
- register mp_word *_W;
- register mp_digit *tmpx;
-
-/*
- Alias for the W[] array
- */
- _W = W;
-
-/*
- Alias for the digits of x
- */
- tmpx = x->dp;
-
-/*
- Copy the digits of a into W[0..a->used-1]
- */
- for (ix = 0; ix < x->used; ix++) {
- *_W++ = *tmpx++;
- }
-
-/*
- Zero the high words of W[a->used..m->used*2]
- */
- for (; ix < n->used * 2 + 1; ix++) {
- *_W++ = 0;
- }
- }
-
-/*
- Now we proceed to zero successive digits from the least
- significant upwards.
- */
- for (ix = 0; ix < n->used; ix++) {
-/*
- mu = ai * m' mod b
-
- We avoid a double precision multiplication (which isn't required) by
- casting the value down to a mp_digit. Note this requires that
- W[ix-1] have the carry cleared (see after the inner loop)
- */
- register mp_digit mu;
- mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
-
-/*
- a = a + mu * m * b**i
-
- This is computed in place and on the fly. The multiplication by b**i
- is handled by offseting which columns the results are added to.
-
- Note the comba method normally doesn't handle carries in the inner loop
- In this case we fix the carry from the previous column since the
- Montgomery reduction requires digits of the result (so far) [see above]
- to work. This is handled by fixing up one carry after the inner loop.
- The carry fixups are done in order so after these loops the first
- m->used words of W[] have the carries fixed
- */
- {
- register int32 iy;
- register mp_digit *tmpn;
- register mp_word *_W;
-
-/*
- Alias for the digits of the modulus
- */
- tmpn = n->dp;
-
-/*
- Alias for the columns set by an offset of ix
- */
- _W = W + ix;
-
-/*
- inner loop
- */
- for (iy = 0; iy < n->used; iy++) {
- *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
- }
- }
-
-/*
- Now fix carry for next digit, W[ix+1]
- */
- W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
- }
-
-/*
- Now we have to propagate the carries and shift the words downward [all those
- least significant digits we zeroed].
- */
- {
- register mp_digit *tmpx;
- register mp_word *_W, *_W1;
-
-/*
- Now fix rest of carries
- */
-
-/*
- alias for current word
- */
- _W1 = W + ix;
-
-/*
- alias for next word, where the carry goes
- */
- _W = W + ++ix;
-
- for (; ix <= n->used * 2 + 1; ix++) {
- *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
- }
-
-/*
- copy out, A = A/b**n
-
- The result is A/b**n but instead of converting from an
- array of mp_word to mp_digit than calling mp_rshd
- we just copy them in the right order
- */
-
-/*
- alias for destination word
- */
- tmpx = x->dp;
-
-/*
- alias for shifted double precision result
- */
- _W = W + n->used;
-
- for (ix = 0; ix < n->used + 1; ix++) {
- *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
- }
-
-/*
- zero oldused digits, if the input a was larger than
- m->used+1 we'll have to clear the digits
- */
- for (; ix < olduse; ix++) {
- *tmpx++ = 0;
- }
- }
-
-/*
- Set the max used and clamp
- */
- x->used = n->used + 1;
- mp_clamp(x);
-
-/*
- if A >= m then A = A - m
- */
- if (mp_cmp_mag(x, n) != MP_LT) {
- return s_mp_sub(x, n, x);
- }
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- High level addition (handles signs)
- */
-int32 mp_add (mp_int * a, mp_int * b, mp_int * c)
-{
- int32 sa, sb, res;
-
-/*
- Get sign of both inputs
- */
- sa = a->sign;
- sb = b->sign;
-
-/*
- Handle two cases, not four.
- */
- if (sa == sb) {
-/*
- Both positive or both negative. Add their magnitudes, copy the sign.
- */
- c->sign = sa;
- res = s_mp_add (a, b, c);
- } else {
-/*
- One positive, the other negative. Subtract the one with the greater
- magnitude from the one of the lesser magnitude. The result gets the sign of
- the one with the greater magnitude.
- */
- if (mp_cmp_mag (a, b) == MP_LT) {
- c->sign = sb;
- res = s_mp_sub (b, a, c);
- } else {
- c->sign = sa;
- res = s_mp_sub (a, b, c);
- }
- }
- return res;
-}
-
-/******************************************************************************/
-/*
- Compare a digit.
- */
-int32 mp_cmp_d (mp_int * a, mp_digit b)
-{
-/*
- Compare based on sign
- */
- if (a->sign == MP_NEG) {
- return MP_LT;
- }
-
-/*
- Compare based on magnitude
- */
- if (a->used > 1) {
- return MP_GT;
- }
-
-/*
- Compare the only digit of a to b
- */
- if (a->dp[0] > b) {
- return MP_GT;
- } else if (a->dp[0] < b) {
- return MP_LT;
- } else {
- return MP_EQ;
- }
-}
-
-/******************************************************************************/
-/*
- b = a/2
- */
-int32 mp_div_2 (mp_int * a, mp_int * b)
-{
- int32 x, res, oldused;
-
-/*
- Copy
- */
- if (b->alloc < a->used) {
- if ((res = mp_grow (b, a->used)) != MP_OKAY) {
- return res;
- }
- }
-
- oldused = b->used;
- b->used = a->used;
- {
- register mp_digit r, rr, *tmpa, *tmpb;
-
-/*
- Source alias
- */
- tmpa = a->dp + b->used - 1;
-
-/*
- dest alias
- */
- tmpb = b->dp + b->used - 1;
-
-/*
- carry
- */
- r = 0;
- for (x = b->used - 1; x >= 0; x--) {
-/*
- Get the carry for the next iteration
- */
- rr = *tmpa & 1;
-
-/*
- Shift the current digit, add in carry and store
- */
- *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
-/*
- Forward carry to next iteration
- */
- r = rr;
- }
-
-/*
- Zero excess digits
- */
- tmpb = b->dp + b->used;
- for (x = b->used; x < oldused; x++) {
- *tmpb++ = 0;
- }
- }
- b->sign = a->sign;
- mp_clamp (b);
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- Computes xR**-1 == x (mod N) via Montgomery Reduction
- */
-#ifdef USE_SMALL_WORD
-int32 mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
-{
- int32 ix, res, digs;
- mp_digit mu;
-
-/* Can the fast reduction [comba] method be used?
-
- Note that unlike in mul you're safely allowed *less* than the available
- columns [255 per default] since carries are fixed up in the inner loop.
- */
- digs = n->used * 2 + 1;
- if ((digs < MP_WARRAY) &&
- n->used <
- (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- return fast_mp_montgomery_reduce (x, n, rho);
- }
-
-/*
- Grow the input as required.
- */
- if (x->alloc < digs) {
- if ((res = mp_grow (x, digs)) != MP_OKAY) {
- return res;
- }
- }
- x->used = digs;
-
- for (ix = 0; ix < n->used; ix++) {
-/*
- mu = ai * rho mod b
-
- The value of rho must be precalculated via mp_montgomery_setup()
- such that it equals -1/n0 mod b this allows the following inner
- loop to reduce the input one digit at a time
- */
- mu = (mp_digit)(((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
-
- /* a = a + mu * m * b**i */
- {
- register int32 iy;
- register mp_digit *tmpn, *tmpx, u;
- register mp_word r;
-
-/*
- alias for digits of the modulus
- */
- tmpn = n->dp;
-
-/*
- alias for the digits of x [the input]
- */
- tmpx = x->dp + ix;
-
-/*
- set the carry to zero
- */
- u = 0;
-
-/*
- Multiply and add in place
- */
- for (iy = 0; iy < n->used; iy++) {
- /* compute product and sum */
- r = ((mp_word)mu) * ((mp_word)*tmpn++) +
- ((mp_word) u) + ((mp_word) * tmpx);
-
- /* get carry */
- u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
-
- /* fix digit */
- *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
- }
- /* At this point the ix'th digit of x should be zero */
-
-
-/*
- propagate carries upwards as required
- */
- while (u) {
- *tmpx += u;
- u = *tmpx >> DIGIT_BIT;
- *tmpx++ &= MP_MASK;
- }
- }
- }
-
-/*
- At this point the n.used'th least significant digits of x are all zero
- which means we can shift x to the right by n.used digits and the
- residue is unchanged.
-*/
- /* x = x/b**n.used */
- mp_clamp(x);
- mp_rshd (x, n->used);
-
- /* if x >= n then x = x - n */
- if (mp_cmp_mag (x, n) != MP_LT) {
- return s_mp_sub (x, n, x);
- }
-
- return MP_OKAY;
-}
-#endif /* USE_SMALL_WORD */
-
-/******************************************************************************/
-/*
- Setups the montgomery reduction stuff.
- */
-int32 mp_montgomery_setup (mp_int * n, mp_digit * rho)
-{
- mp_digit x, b;
-
-/*
- fast inversion mod 2**k
-
- Based on the fact that
-
- XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
- => 2*X*A - X*X*A*A = 1
- => 2*(1) - (1) = 1
-*/
- b = n->dp[0];
-
- if ((b & 1) == 0) {
- return MP_VAL;
- }
-
- x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
- x = (x * (2 - b * x)) & MP_MASK; /* here x*a==1 mod 2**8 */
-#if !defined(MP_8BIT)
- x = (x * (2 - b * x)) & MP_MASK; /* here x*a==1 mod 2**8 */
-#endif /* MP_8BIT */
-#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
- x *= 2 - b * x; /* here x*a==1 mod 2**32 */
-#endif
-#ifdef MP_64BIT
- x *= 2 - b * x; /* here x*a==1 mod 2**64 */
-#endif /* MP_64BIT */
-
- /* rho = -1/m mod b */
- *rho = (((mp_word) 1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
-
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- High level subtraction (handles signs)
- */
-int32 mp_sub (mp_int * a, mp_int * b, mp_int * c)
-{
- int32 sa, sb, res;
-
- sa = a->sign;
- sb = b->sign;
-
- if (sa != sb) {
-/*
- Subtract a negative from a positive, OR subtract a positive from a
- negative. In either case, ADD their magnitudes, and use the sign of
- the first number.
- */
- c->sign = sa;
- res = s_mp_add (a, b, c);
- } else {
-/*
- Subtract a positive from a positive, OR subtract a negative
- from a negative. First, take the difference between their
- magnitudes, then...
- */
- if (mp_cmp_mag (a, b) != MP_LT) {
-/*
- Copy the sign from the first
- */
- c->sign = sa;
- /* The first has a larger or equal magnitude */
- res = s_mp_sub (a, b, c);
- } else {
-/*
- The result has the *opposite* sign from the first number.
- */
- c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
-/*
- The second has a larger magnitude
- */
- res = s_mp_sub (b, a, c);
- }
- }
- return res;
-}
-
-/******************************************************************************/
-/*
- calc a value mod 2**b
- */
-int32 mp_mod_2d (mp_int * a, int32 b, mp_int * c)
-{
- int32 x, res;
-
-/*
- if b is <= 0 then zero the int32
- */
- if (b <= 0) {
- mp_zero (c);
- return MP_OKAY;
- }
-
-/*
- If the modulus is larger than the value than return
- */
- if (b >=(int32) (a->used * DIGIT_BIT)) {
- res = mp_copy (a, c);
- return res;
- }
-
- /* copy */
- if ((res = mp_copy (a, c)) != MP_OKAY) {
- return res;
- }
-
-/*
- Zero digits above the last digit of the modulus
- */
- for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
- c->dp[x] = 0;
- }
-/*
- Clear the digit that is not completely outside/inside the modulus
- */
- c->dp[b / DIGIT_BIT] &=
- (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
- mp_clamp (c);
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- Shift right a certain amount of digits.
- */
-void mp_rshd (mp_int * a, int32 b)
-{
- int32 x;
-
-/*
- If b <= 0 then ignore it
- */
- if (b <= 0) {
- return;
- }
-
-/*
- If b > used then simply zero it and return.
-*/
- if (a->used <= b) {
- mp_zero (a);
- return;
- }
-
- {
- register mp_digit *bottom, *top;
-
-/*
- Shift the digits down
- */
- /* bottom */
- bottom = a->dp;
-
- /* top [offset into digits] */
- top = a->dp + b;
-
-/*
- This is implemented as a sliding window where the window is b-digits long
- and digits from the top of the window are copied to the bottom.
-
- e.g.
-
- b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
- /\ | ---->
- \-------------------/ ---->
- */
- for (x = 0; x < (a->used - b); x++) {
- *bottom++ = *top++;
- }
-
-/*
- Zero the top digits
- */
- for (; x < a->used; x++) {
- *bottom++ = 0;
- }
- }
-
-/*
- Remove excess digits
- */
- a->used -= b;
-}
-
-/******************************************************************************/
-/*
- Low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9
- */
-int32 s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
-{
- int32 olduse, res, min, max;
-
-/*
- Find sizes
- */
- min = b->used;
- max = a->used;
-
-/*
- init result
- */
- if (c->alloc < max) {
- if ((res = mp_grow (c, max)) != MP_OKAY) {
- return res;
- }
- }
- olduse = c->used;
- c->used = max;
-
- {
- register mp_digit u, *tmpa, *tmpb, *tmpc;
- register int32 i;
-
-/*
- alias for digit pointers
- */
- tmpa = a->dp;
- tmpb = b->dp;
- tmpc = c->dp;
-
-/*
- set carry to zero
- */
- u = 0;
- for (i = 0; i < min; i++) {
- /* T[i] = A[i] - B[i] - U */
- *tmpc = *tmpa++ - *tmpb++ - u;
-
-/*
- U = carry bit of T[i]
- Note this saves performing an AND operation since if a carry does occur it
- will propagate all the way to the MSB. As a result a single shift
- is enough to get the carry
- */
- u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
-
- /* Clear carry from T[i] */
- *tmpc++ &= MP_MASK;
- }
-
-/*
- Now copy higher words if any, e.g. if A has more digits than B
- */
- for (; i < max; i++) {
- /* T[i] = A[i] - U */
- *tmpc = *tmpa++ - u;
-
- /* U = carry bit of T[i] */
- u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
-
- /* Clear carry from T[i] */
- *tmpc++ &= MP_MASK;
- }
-
-/*
- Clear digits above used (since we may not have grown result above)
- */
- for (i = c->used; i < olduse; i++) {
- *tmpc++ = 0;
- }
- }
-
- mp_clamp (c);
- return MP_OKAY;
-}
-/******************************************************************************/
-/*
- integer signed division.
-
- c*b + d == a [e.g. a/b, c=quotient, d=remainder]
- HAC pp.598 Algorithm 14.20
-
- Note that the description in HAC is horribly incomplete. For example,
- it doesn't consider the case where digits are removed from 'x' in the inner
- loop. It also doesn't consider the case that y has fewer than three
- digits, etc..
-
- The overall algorithm is as described as 14.20 from HAC but fixed to
- treat these cases.
- */
-#ifdef MP_DIV_SMALL
-int32 mp_div(psPool_t *pool, mp_int * a, mp_int * b, mp_int * c, mp_int * d)
-{
- mp_int ta, tb, tq, q;
- int32 res, n, n2;
-
-/*
- is divisor zero ?
- */
- if (mp_iszero (b) == 1) {
- return MP_VAL;
- }
-
-/*
- if a < b then q=0, r = a
- */
- if (mp_cmp_mag (a, b) == MP_LT) {
- if (d != NULL) {
- res = mp_copy (a, d);
- } else {
- res = MP_OKAY;
- }
- if (c != NULL) {
- mp_zero (c);
- }
- return res;
- }
-
-/*
- init our temps
- */
- if ((res = _mp_init_multi(pool, &ta, &tb, &tq, &q, NULL, NULL, NULL, NULL) != MP_OKAY)) {
- return res;
- }
-
-/*
- tq = 2^n, tb == b*2^n
- */
- mp_set(&tq, 1);
- n = mp_count_bits(a) - mp_count_bits(b);
- if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
- ((res = mp_abs(b, &tb)) != MP_OKAY) ||
- ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
- ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
- goto __ERR;
- }
-/* old
- if (((res = mp_copy(a, &ta)) != MP_OKAY) ||
- ((res = mp_copy(b, &tb)) != MP_OKAY) ||
- ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
- ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
- goto LBL_ERR;
- }
-*/
- while (n-- >= 0) {
- if (mp_cmp(&tb, &ta) != MP_GT) {
- if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
- ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
- goto LBL_ERR;
- }
- }
- if (((res = mp_div_2d(pool, &tb, 1, &tb, NULL)) != MP_OKAY) ||
- ((res = mp_div_2d(pool, &tq, 1, &tq, NULL)) != MP_OKAY)) {
- goto LBL_ERR;
- }
- }
-
-/*
- now q == quotient and ta == remainder
- */
- n = a->sign;
- n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
- if (c != NULL) {
- mp_exch(c, &q);
- c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
- }
- if (d != NULL) {
- mp_exch(d, &ta);
- d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
- }
-LBL_ERR:
- _mp_clear_multi(&ta, &tb, &tq, &q, NULL, NULL, NULL, NULL);
- return res;
-}
-#else /* MP_DIV_SMALL */
-
-int32 mp_div(psPool_t *pool, mp_int * a, mp_int * b, mp_int * c, mp_int * d)
-{
- mp_int q, x, y, t1, t2;
- int32 res, n, t, i, norm, neg;
-
-/*
- is divisor zero ?
- */
- if (mp_iszero(b) == 1) {
- return MP_VAL;
- }
-
-/*
- if a < b then q=0, r = a
- */
- if (mp_cmp_mag(a, b) == MP_LT) {
- if (d != NULL) {
- res = mp_copy(a, d);
- } else {
- res = MP_OKAY;
- }
- if (c != NULL) {
- mp_zero(c);
- }
- return res;
- }
-
- if ((res = mp_init_size(pool, &q, a->used + 2)) != MP_OKAY) {
- return res;
- }
- q.used = a->used + 2;
-
- if ((res = mp_init(pool, &t1)) != MP_OKAY) {
- goto LBL_Q;
- }
-
- if ((res = mp_init(pool, &t2)) != MP_OKAY) {
- goto LBL_T1;
- }
-
- if ((res = mp_init_copy(pool, &x, a)) != MP_OKAY) {
- goto LBL_T2;
- }
-
- if ((res = mp_init_copy(pool, &y, b)) != MP_OKAY) {
- goto LBL_X;
- }
-
-/*
- fix the sign
- */
- neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
- x.sign = y.sign = MP_ZPOS;
-
-/*
- normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT]
- */
- norm = mp_count_bits(&y) % DIGIT_BIT;
- if (norm < (int32)(DIGIT_BIT-1)) {
- norm = (DIGIT_BIT-1) - norm;
- if ((res = mp_mul_2d(&x, norm, &x)) != MP_OKAY) {
- goto LBL_Y;
- }
- if ((res = mp_mul_2d(&y, norm, &y)) != MP_OKAY) {
- goto LBL_Y;
- }
- } else {
- norm = 0;
- }
-
-/*
- note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4
- */
- n = x.used - 1;
- t = y.used - 1;
-
-/*
- while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} }
- */
- if ((res = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
- goto LBL_Y;
- }
-
- while (mp_cmp(&x, &y) != MP_LT) {
- ++(q.dp[n - t]);
- if ((res = mp_sub(&x, &y, &x)) != MP_OKAY) {
- goto LBL_Y;
- }
- }
-
-/*
- reset y by shifting it back down
- */
- mp_rshd(&y, n - t);
-
-/*
- step 3. for i from n down to (t + 1)
- */
- for (i = n; i >= (t + 1); i--) {
- if (i > x.used) {
- continue;
- }
-
-/*
- step 3.1 if xi == yt then set q{i-t-1} to b-1,
- otherwise set q{i-t-1} to (xi*b + x{i-1})/yt
- */
- if (x.dp[i] == y.dp[t]) {
- q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
- } else {
- mp_word tmp;
- tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
- tmp |= ((mp_word) x.dp[i - 1]);
- tmp /= ((mp_word) y.dp[t]);
- if (tmp > (mp_word) MP_MASK) {
- tmp = MP_MASK;
- }
- q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
- }
-
-/*
- while (q{i-t-1} * (yt * b + y{t-1})) >
- xi * b**2 + xi-1 * b + xi-2
-
- do q{i-t-1} -= 1;
- */
- q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
- do {
- q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
-
-/*
- find left hand
- */
- mp_zero (&t1);
- t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
- t1.dp[1] = y.dp[t];
- t1.used = 2;
- if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
- goto LBL_Y;
- }
-
-/*
- find right hand
- */
- t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
- t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
- t2.dp[2] = x.dp[i];
- t2.used = 3;
- } while (mp_cmp_mag(&t1, &t2) == MP_GT);
-
-/*
- step 3.3 x = x - q{i-t-1} * y * b**{i-t-1}
- */
- if ((res = mp_mul_d(&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
- goto LBL_Y;
- }
-
- if ((res = mp_lshd(&t1, i - t - 1)) != MP_OKAY) {
- goto LBL_Y;
- }
-
- if ((res = mp_sub(&x, &t1, &x)) != MP_OKAY) {
- goto LBL_Y;
- }
-
-/*
- if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; }
- */
- if (x.sign == MP_NEG) {
- if ((res = mp_copy(&y, &t1)) != MP_OKAY) {
- goto LBL_Y;
- }
- if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
- goto LBL_Y;
- }
- if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
- goto LBL_Y;
- }
-
- q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
- }
- }
-
-/*
- now q is the quotient and x is the remainder
- [which we have to normalize]
- */
-
-/*
- get sign before writing to c
- */
- x.sign = x.used == 0 ? MP_ZPOS : a->sign;
-
- if (c != NULL) {
- mp_clamp(&q);
- mp_exch(&q, c);
- c->sign = neg;
- }
-
- if (d != NULL) {
- mp_div_2d(pool, &x, norm, &x, NULL);
- mp_exch(&x, d);
- }
-
- res = MP_OKAY;
-
-LBL_Y:mp_clear (&y);
-LBL_X:mp_clear (&x);
-LBL_T2:mp_clear (&t2);
-LBL_T1:mp_clear (&t1);
-LBL_Q:mp_clear (&q);
- return res;
-}
-#endif /* MP_DIV_SMALL */
-
-/******************************************************************************/
-/*
- multiplies |a| * |b| and only computes upto digs digits of result
- HAC pp. 595, Algorithm 14.12 Modified so you can control how many digits
- of output are created.
- */
-#ifdef USE_SMALL_WORD
-int32 s_mp_mul_digs(psPool_t *pool, mp_int * a, mp_int * b, mp_int * c, int32 digs)
-{
- mp_int t;
- int32 res, pa, pb, ix, iy;
- mp_digit u;
- mp_word r;
- mp_digit tmpx, *tmpt, *tmpy;
-
-/*
- Can we use the fast multiplier?
- */
- if (((digs) < MP_WARRAY) &&
- MIN (a->used, b->used) <
- (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- return fast_s_mp_mul_digs (pool, a, b, c, digs);
- }
-
- if ((res = mp_init_size(pool, &t, digs)) != MP_OKAY) {
- return res;
- }
- t.used = digs;
-
-/*
- Compute the digits of the product directly
- */
- pa = a->used;
- for (ix = 0; ix < pa; ix++) {
- /* set the carry to zero */
- u = 0;
-
-/*
- Limit ourselves to making digs digits of output.
-*/
- pb = MIN (b->used, digs - ix);
-
-/*
- Setup some aliases. Copy of the digit from a used
- within the nested loop
- */
- tmpx = a->dp[ix];
-
-/*
- An alias for the destination shifted ix places
- */
- tmpt = t.dp + ix;
-
-/*
- An alias for the digits of b
- */
- tmpy = b->dp;
-
-/*
- Compute the columns of the output and propagate the carry
- */
- for (iy = 0; iy < pb; iy++) {
- /* compute the column as a mp_word */
- r = ((mp_word)*tmpt) +
- ((mp_word)tmpx) * ((mp_word)*tmpy++) +
- ((mp_word) u);
-
- /* the new column is the lower part of the result */
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
-
- /* get the carry word from the result */
- u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
- }
-/*
- Set carry if it is placed below digs
- */
- if (ix + iy < digs) {
- *tmpt = u;
- }
- }
-
- mp_clamp (&t);
- mp_exch (&t, c);
-
- mp_clear (&t);
- return MP_OKAY;
-}
-#endif /* USE_SMALL_WORD */
-
-/******************************************************************************/
-/*
- Fast (comba) multiplier
-
- This is the fast column-array [comba] multiplier. It is designed to
- compute the columns of the product first then handle the carries afterwards.
- This has the effect of making the nested loops that compute the columns
- very simple and schedulable on super-scalar processors.
-
- This has been modified to produce a variable number of digits of output so
- if say only a half-product is required you don't have to compute the upper
- half (a feature required for fast Barrett reduction).
-
- Based on Algorithm 14.12 on pp.595 of HAC.
-*/
-
-int32 fast_s_mp_mul_digs(psPool_t *pool, mp_int * a, mp_int * b, mp_int * c,
- int32 digs)
-{
- int32 olduse, res, pa, ix, iz, neg;
- mp_digit W[MP_WARRAY];
- register mp_word _W;
-
- neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
-
-/*
- grow the destination as required
- */
- if (c->alloc < digs) {
- if ((res = mp_grow(c, digs)) != MP_OKAY) {
- return res;
- }
- }
-
-/*
- number of output digits to produce
- */
- pa = MIN(digs, a->used + b->used);
-
-/*
- clear the carry
- */
- _W = 0;
- for (ix = 0; ix < pa; ix++) {
- int32 tx, ty;
- int32 iy;
- mp_digit *tmpx, *tmpy;
-
-/*
- get offsets into the two bignums
- */
- ty = MIN(b->used-1, ix);
- tx = ix - ty;
-
-/*
- setup temp aliases
- */
- tmpx = a->dp + tx;
- tmpy = b->dp + ty;
-
-/*
- this is the number of times the loop will iterrate, essentially its
- while (tx++ < a->used && ty-- >= 0) { ... }
- */
- iy = MIN(a->used-tx, ty+1);
-
-/*
- execute loop
- */
- for (iz = 0; iz < iy; ++iz) {
- _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
- }
-
-/*
- store term
- */
- W[ix] = (mp_digit)(_W & MP_MASK);
-
-/*
- make next carry
- */
- _W = _W >> ((mp_word)DIGIT_BIT);
- }
-
-/*
- store final carry
- */
- W[ix] = (mp_digit)(_W & MP_MASK);
-
-/*
- setup dest
- */
- olduse = c->used;
- c->used = pa;
-
- {
- register mp_digit *tmpc;
- tmpc = c->dp;
- for (ix = 0; ix < pa+1; ix++) {
-/*
- now extract the previous digit [below the carry]
- */
- *tmpc++ = W[ix];
- }
-
-/*
- clear unused digits [that existed in the old copy of c]
- */
- for (; ix < olduse; ix++) {
- *tmpc++ = 0;
- }
- }
- mp_clamp (c);
- c->sign = (c->used > 0) ? neg : MP_ZPOS;
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- b = a*2
- */
-int32 mp_mul_2 (mp_int * a, mp_int * b)
-{
- int32 x, res, oldused;
-
-/*
- grow to accomodate result
- */
- if (b->alloc < a->used + 1) {
- if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
- return res;
- }
- }
-
- oldused = b->used;
- b->used = a->used;
-
- {
- register mp_digit r, rr, *tmpa, *tmpb;
-
- /* alias for source */
- tmpa = a->dp;
-
- /* alias for dest */
- tmpb = b->dp;
-
- /* carry */
- r = 0;
- for (x = 0; x < a->used; x++) {
-
-/*
- get what will be the *next* carry bit from the MSB of the
- current digit
- */
- rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
-
-/*
- now shift up this digit, add in the carry [from the previous]
- */
- *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
-
-/* copy the carry that would be from the source digit into the next
- iteration
- */
- r = rr;
- }
-
-/*
- new leading digit?
- */
- if (r != 0) {
-/*
- add a MSB which is always 1 at this point
- */
- *tmpb = 1;
- ++(b->used);
- }
-
-/*
- now zero any excess digits on the destination that we didn't write to
- */
- tmpb = b->dp + b->used;
- for (x = b->used; x < oldused; x++) {
- *tmpb++ = 0;
- }
- }
- b->sign = a->sign;
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- multiply by a digit
- */
-int32 mp_mul_d(mp_int * a, mp_digit b, mp_int * c)
-{
- mp_digit u, *tmpa, *tmpc;
- mp_word r;
- int32 ix, res, olduse;
-
-/*
- make sure c is big enough to hold a*b
- */
- if (c->alloc < a->used + 1) {
- if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
- return res;
- }
- }
-
-/*
- get the original destinations used count
- */
- olduse = c->used;
-
-/*
- set the sign
- */
- c->sign = a->sign;
-
-/*
- alias for a->dp [source]
- */
- tmpa = a->dp;
-
-/*
- alias for c->dp [dest]
- */
- tmpc = c->dp;
-
- /* zero carry */
- u = 0;
-
- /* compute columns */
- for (ix = 0; ix < a->used; ix++) {
-/*
- compute product and carry sum for this term
- */
- r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
-
-/*
- mask off higher bits to get a single digit
- */
- *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
-
-/*
- send carry into next iteration
- */
- u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
- }
-
-/*
- store final carry [if any] and increment ix offset
- */
- *tmpc++ = u;
- ++ix;
-
-/*
- now zero digits above the top
- */
- while (ix++ < olduse) {
- *tmpc++ = 0;
- }
-
- /* set used count */
- c->used = a->used + 1;
- mp_clamp(c);
-
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16
- */
-#ifdef USE_SMALL_WORD
-int32 s_mp_sqr (psPool_t *pool, mp_int * a, mp_int * b)
-{
- mp_int t;
- int32 res, ix, iy, pa;
- mp_word r;
- mp_digit u, tmpx, *tmpt;
-
- pa = a->used;
- if ((res = mp_init_size(pool, &t, 2*pa + 1)) != MP_OKAY) {
- return res;
- }
-
-/*
- default used is maximum possible size
- */
- t.used = 2*pa + 1;
-
- for (ix = 0; ix < pa; ix++) {
-/*
- first calculate the digit at 2*ix
- calculate double precision result
- */
- r = ((mp_word) t.dp[2*ix]) +
- ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
-
-/*
- store lower part in result
- */
- t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
-
-/*
- get the carry
- */
- u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
-
-/*
- left hand side of A[ix] * A[iy]
- */
- tmpx = a->dp[ix];
-
-/*
- alias for where to store the results
- */
- tmpt = t.dp + (2*ix + 1);
-
- for (iy = ix + 1; iy < pa; iy++) {
-/*
- first calculate the product
- */
- r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
-
-/*
- now calculate the double precision result, note we use addition
- instead of *2 since it's easier to optimize
- */
- r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
-
-/*
- store lower part
- */
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
-
- /* get carry */
- u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
- }
- /* propagate upwards */
- while (u != ((mp_digit) 0)) {
- r = ((mp_word) *tmpt) + ((mp_word) u);
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
- u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
- }
- }
-
- mp_clamp (&t);
- mp_exch (&t, b);
- mp_clear (&t);
- return MP_OKAY;
-}
-#endif /* USE_SMALL_WORD */
-
-/******************************************************************************/
-/*
- fast squaring
-
- This is the comba method where the columns of the product are computed
- first then the carries are computed. This has the effect of making a very
- simple inner loop that is executed the most
-
- W2 represents the outer products and W the inner.
-
- A further optimizations is made because the inner products are of the
- form "A * B * 2". The *2 part does not need to be computed until the end
- which is good because 64-bit shifts are slow!
-
- Based on Algorithm 14.16 on pp.597 of HAC.
-
- This is the 1.0 version, but no SSE stuff
-*/
-int32 fast_s_mp_sqr(psPool_t *pool, mp_int * a, mp_int * b)
-{
- int32 olduse, res, pa, ix, iz;
- mp_digit W[MP_WARRAY], *tmpx;
- mp_word W1;
-
-/*
- grow the destination as required
- */
- pa = a->used + a->used;
- if (b->alloc < pa) {
- if ((res = mp_grow(b, pa)) != MP_OKAY) {
- return res;
- }
- }
-
-/*
- number of output digits to produce
- */
- W1 = 0;
- for (ix = 0; ix < pa; ix++) {
- int32 tx, ty, iy;
- mp_word _W;
- mp_digit *tmpy;
-
-/*
- clear counter
- */
- _W = 0;
-
-/*
- get offsets into the two bignums
- */
- ty = MIN(a->used-1, ix);
- tx = ix - ty;
-
-/*
- setup temp aliases
- */
- tmpx = a->dp + tx;
- tmpy = a->dp + ty;
-
-/*
- this is the number of times the loop will iterrate, essentially
- while (tx++ < a->used && ty-- >= 0) { ... }
-*/
- iy = MIN(a->used-tx, ty+1);
-
-/*
- now for squaring tx can never equal ty
- we halve the distance since they approach at a rate of 2x
- and we have to round because odd cases need to be executed
-*/
- iy = MIN(iy, (ty-tx+1)>>1);
-
-/*
- execute loop
- */
- for (iz = 0; iz < iy; iz++) {
- _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
- }
-
-/*
- double the inner product and add carry
- */
- _W = _W + _W + W1;
-
-/*
- even columns have the square term in them
- */
- if ((ix&1) == 0) {
- _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
- }
-
-/*
- store it
- */
- W[ix] = (mp_digit)(_W & MP_MASK);
-
-/*
- make next carry
- */
- W1 = _W >> ((mp_word)DIGIT_BIT);
- }
-
-/*
- setup dest
- */
- olduse = b->used;
- b->used = a->used+a->used;
-
- {
- mp_digit *tmpb;
- tmpb = b->dp;
- for (ix = 0; ix < pa; ix++) {
- *tmpb++ = W[ix] & MP_MASK;
- }
-
-/*
- clear unused digits [that existed in the old copy of c]
- */
- for (; ix < olduse; ix++) {
- *tmpb++ = 0;
- }
- }
- mp_clamp(b);
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- computes a = 2**b
-
- Simple algorithm which zeroes the int32, grows it then just sets one bit
- as required.
- */
-int32 mp_2expt (mp_int * a, int32 b)
-{
- int32 res;
-
-/*
- zero a as per default
- */
- mp_zero (a);
-
-/*
- grow a to accomodate the single bit
- */
- if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
- return res;
- }
-
-/*
- set the used count of where the bit will go
- */
- a->used = b / DIGIT_BIT + 1;
-
-/*
- put the single bit in its place
- */
- a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
-
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- init an mp_init for a given size
- */
-int32 mp_init_size(psPool_t *pool, mp_int * a, int32 size)
-{
- int x;
-/*
- pad size so there are always extra digits
- */
- size += (MP_PREC * 2) - (size % MP_PREC);
-
-/*
- alloc mem
- */
- a->dp = OPT_CAST(mp_digit) psMalloc(pool, sizeof (mp_digit) * size);
- if (a->dp == NULL) {
- return MP_MEM;
- }
- a->used = 0;
- a->alloc = size;
- a->sign = MP_ZPOS;
-
-/*
- zero the digits
- */
- for (x = 0; x < size; x++) {
- a->dp[x] = 0;
- }
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- low level addition, based on HAC pp.594, Algorithm 14.7
- */
-int32 s_mp_add (mp_int * a, mp_int * b, mp_int * c)
-{
- mp_int *x;
- int32 olduse, res, min, max;
-
-/*
- find sizes, we let |a| <= |b| which means we have to sort them. "x" will
- point to the input with the most digits
- */
- if (a->used > b->used) {
- min = b->used;
- max = a->used;
- x = a;
- } else {
- min = a->used;
- max = b->used;
- x = b;
- }
-
- /* init result */
- if (c->alloc < max + 1) {
- if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
- return res;
- }
- }
-
-/*
- get old used digit count and set new one
- */
- olduse = c->used;
- c->used = max + 1;
-
- {
- register mp_digit u, *tmpa, *tmpb, *tmpc;
- register int32 i;
-
- /* alias for digit pointers */
-
- /* first input */
- tmpa = a->dp;
-
- /* second input */
- tmpb = b->dp;
-
- /* destination */
- tmpc = c->dp;
-
- /* zero the carry */
- u = 0;
- for (i = 0; i < min; i++) {
-/*
- Compute the sum at one digit, T[i] = A[i] + B[i] + U
- */
- *tmpc = *tmpa++ + *tmpb++ + u;
-
-/*
- U = carry bit of T[i]
- */
- u = *tmpc >> ((mp_digit)DIGIT_BIT);
-
-/*
- take away carry bit from T[i]
- */
- *tmpc++ &= MP_MASK;
- }
-
-/*
- now copy higher words if any, that is in A+B if A or B has more digits add
- those in
- */
- if (min != max) {
- for (; i < max; i++) {
- /* T[i] = X[i] + U */
- *tmpc = x->dp[i] + u;
-
- /* U = carry bit of T[i] */
- u = *tmpc >> ((mp_digit)DIGIT_BIT);
-
- /* take away carry bit from T[i] */
- *tmpc++ &= MP_MASK;
- }
- }
-
- /* add carry */
- *tmpc++ = u;
-
-/*
- clear digits above oldused
- */
- for (i = c->used; i < olduse; i++) {
- *tmpc++ = 0;
- }
- }
-
- mp_clamp (c);
- return MP_OKAY;
-}
-
-/******************************************************************************/
-/*
- FUTURE - this is only needed by the SSH code, SLOW or not, because RSA
- exponents are always odd.
-*/
-int32 mp_invmodSSH(psPool_t *pool, mp_int * a, mp_int * b, mp_int * c)
-{
- mp_int x, y, u, v, A, B, C, D;
- int32 res;
-
-/*
- b cannot be negative
- */
- if (b->sign == MP_NEG || mp_iszero(b) == 1) {
- return MP_VAL;
- }
-
-/*
- if the modulus is odd we can use a faster routine instead
- */
- if (mp_isodd (b) == 1) {
- return fast_mp_invmod(pool, a, b, c);
- }
-
-/*
- init temps
- */
- if ((res = _mp_init_multi(pool, &x, &y, &u, &v,
- &A, &B, &C, &D)) != MP_OKAY) {
- return res;
- }
-
- /* x = a, y = b */
- if ((res = mp_copy(a, &x)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_copy(b, &y)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
-/*
- 2. [modified] if x,y are both even then return an error!
- */
- if (mp_iseven(&x) == 1 && mp_iseven (&y) == 1) {
- res = MP_VAL;
- goto LBL_ERR;
- }
-
-/*
- 3. u=x, v=y, A=1, B=0, C=0,D=1
- */
- if ((res = mp_copy(&x, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_copy(&y, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- mp_set (&A, 1);
- mp_set (&D, 1);
-
-top:
-/*
- 4. while u is even do
- */
- while (mp_iseven(&u) == 1) {
- /* 4.1 u = u/2 */
- if ((res = mp_div_2(&u, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 4.2 if A or B is odd then */
- if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
- /* A = (A+y)/2, B = (B-x)/2 */
- if ((res = mp_add(&A, &y, &A)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* A = A/2, B = B/2 */
- if ((res = mp_div_2(&A, &A)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_div_2(&B, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
-/*
- 5. while v is even do
- */
- while (mp_iseven(&v) == 1) {
- /* 5.1 v = v/2 */
- if ((res = mp_div_2(&v, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 5.2 if C or D is odd then */
- if (mp_isodd(&C) == 1 || mp_isodd (&D) == 1) {
- /* C = (C+y)/2, D = (D-x)/2 */
- if ((res = mp_add(&C, &y, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* C = C/2, D = D/2 */
- if ((res = mp_div_2(&C, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_div_2(&D, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
-/*
- 6. if u >= v then
- */
- if (mp_cmp(&u, &v) != MP_LT) {
- /* u = u - v, A = A - C, B = B - D */
- if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- if ((res = mp_sub(&A, &C, &A)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- } else {
- /* v - v - u, C = C - A, D = D - B */
- if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- if ((res = mp_sub(&C, &A, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
-/*
- if not zero goto step 4
- */
- if (mp_iszero(&u) == 0)
- goto top;
-
-/*
- now a = C, b = D, gcd == g*v
- */
-
-/*
- if v != 1 then there is no inverse
- */
- if (mp_cmp_d(&v, 1) != MP_EQ) {
- res = MP_VAL;
- goto LBL_ERR;
- }
-
-/*
- if its too low
- */
- while (mp_cmp_d(&C, 0) == MP_LT) {
- if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
-/*
- too big
- */
- while (mp_cmp_mag(&C, b) != MP_LT) {
- if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
-/*
- C is now the inverse
- */
- mp_exch(&C, c);
- res = MP_OKAY;
-LBL_ERR:_mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D);
- return res;
-}
-
-/******************************************************************************/
-
-/*
- * Computes the modular inverse via binary extended euclidean algorithm,
- * that is c = 1/a mod b
- *
- * Based on slow invmod except this is optimized for the case where b is
- * odd as per HAC Note 14.64 on pp. 610
- */
-int32 fast_mp_invmod(psPool_t *pool, mp_int * a, mp_int * b, mp_int * c)
-{
- mp_int x, y, u, v, B, D;
- int32 res, neg;
-
-/*
- 2. [modified] b must be odd
- */
- if (mp_iseven (b) == 1) {
- return MP_VAL;
- }
-
-/*
- init all our temps
- */
- if ((res = _mp_init_multi(pool, &x, &y, &u, &v, &B, &D, NULL, NULL)) != MP_OKAY) {
- return res;
- }
-
-/*
- x == modulus, y == value to invert
- */
- if ((res = mp_copy(b, &x)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
-/*
- we need y = |a|
- */
- if ((res = mp_mod(pool, a, b, &y)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
-/*
- 3. u=x, v=y, A=1, B=0, C=0,D=1
- */
- if ((res = mp_copy(&x, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_copy(&y, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- mp_set(&D, 1);
-
-top:
-/*
- 4. while u is even do
-*/
- while (mp_iseven(&u) == 1) {
- /* 4.1 u = u/2 */
- if ((res = mp_div_2(&u, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 4.2 if B is odd then */
- if (mp_isodd(&B) == 1) {
- if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* B = B/2 */
- if ((res = mp_div_2(&B, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
-/*
- 5. while v is even do
- */
- while (mp_iseven(&v) == 1) {
- /* 5.1 v = v/2 */
- if ((res = mp_div_2(&v, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 5.2 if D is odd then */
- if (mp_isodd(&D) == 1) {
- /* D = (D-x)/2 */
- if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* D = D/2 */
- if ((res = mp_div_2(&D, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
-/*
- 6. if u >= v then
- */
- if (mp_cmp(&u, &v) != MP_LT) {
- /* u = u - v, B = B - D */
- if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- } else {
- /* v - v - u, D = D - B */
- if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
-/*
- if not zero goto step 4
- */
- if (mp_iszero(&u) == 0) {
- goto top;
- }
-
-/*
- now a = C, b = D, gcd == g*v
- */
-
-/*
- if v != 1 then there is no inverse
- */
- if (mp_cmp_d(&v, 1) != MP_EQ) {
- res = MP_VAL;
- goto LBL_ERR;
- }
-
-/*
- b is now the inverse
- */
- neg = a->sign;
- while (D.sign == MP_NEG) {
- if ((res = mp_add(&D, b, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- mp_exch(&D, c);
- c->sign = neg;
- res = MP_OKAY;
-
-LBL_ERR:_mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL, NULL);
- return res;
-}
-
-/******************************************************************************/
-/*
- d = a + b (mod c)
- */
-int32 mp_addmod (psPool_t *pool, mp_int * a, mp_int * b, mp_int * c, mp_int * d)
-{
- int32 res;
- mp_int t;
-
- if ((res = mp_init(pool, &t)) != MP_OKAY) {
- return res;
- }
-
- if ((res = mp_add (a, b, &t)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- res = mp_mod (pool, &t, c, d);
- mp_clear (&t);
- return res;
-}
-
-/******************************************************************************/
-/*
- shrink a bignum
- */
-int32 mp_shrink (mp_int * a)
-{
- mp_digit *tmp;
-
- if (a->alloc != a->used && a->used > 0) {
- if ((tmp = psRealloc(a->dp, sizeof (mp_digit) * a->used)) == NULL) {
- return MP_MEM;
- }
- a->dp = tmp;
- a->alloc = a->used;
- }
- return MP_OKAY;
-}
-
-/* single digit subtraction */
-int32 mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
-{
- mp_digit *tmpa, *tmpc, mu;
- int32 res, ix, oldused;
-
- /* grow c as required */
- if (c->alloc < a->used + 1) {
- if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
- return res;
- }
- }
-
- /* if a is negative just do an unsigned
- * addition [with fudged signs]
- */
- if (a->sign == MP_NEG) {
- a->sign = MP_ZPOS;
- res = mp_add_d(a, b, c);
- a->sign = c->sign = MP_NEG;
- return res;
- }
-
- /* setup regs */
- oldused = c->used;
- tmpa = a->dp;
- tmpc = c->dp;
-
- /* if a <= b simply fix the single digit */
- if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
- if (a->used == 1) {
- *tmpc++ = b - *tmpa;
- } else {
- *tmpc++ = b;
- }
- ix = 1;
-
- /* negative/1digit */
- c->sign = MP_NEG;
- c->used = 1;
- } else {
- /* positive/size */
- c->sign = MP_ZPOS;
- c->used = a->used;
-
- /* subtract first digit */
- *tmpc = *tmpa++ - b;
- mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
- *tmpc++ &= MP_MASK;
-
- /* handle rest of the digits */
- for (ix = 1; ix < a->used; ix++) {
- *tmpc = *tmpa++ - mu;
- mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
- *tmpc++ &= MP_MASK;
- }
- }
-
- /* zero excess digits */
- while (ix++ < oldused) {
- *tmpc++ = 0;
- }
- mp_clamp(c);
- return MP_OKAY;
-}
-
-/* single digit addition */
-int32 mp_add_d (mp_int * a, mp_digit b, mp_int * c)
-{
- int32 res, ix, oldused;
- mp_digit *tmpa, *tmpc, mu;
-
- /* grow c as required */
- if (c->alloc < a->used + 1) {
- if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
- return res;
- }
- }
-
- /* if a is negative and |a| >= b, call c = |a| - b */
- if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
- /* temporarily fix sign of a */
- a->sign = MP_ZPOS;
-
- /* c = |a| - b */
- res = mp_sub_d(a, b, c);
-
- /* fix sign */
- a->sign = c->sign = MP_NEG;
- return res;
- }
-
- /* old number of used digits in c */
- oldused = c->used;
-
- /* sign always positive */
- c->sign = MP_ZPOS;
-
- /* source alias */
- tmpa = a->dp;
-
- /* destination alias */
- tmpc = c->dp;
-
- /* if a is positive */
- if (a->sign == MP_ZPOS) {
- /* add digit, after this we're propagating the carry */
- *tmpc = *tmpa++ + b;
- mu = *tmpc >> DIGIT_BIT;
- *tmpc++ &= MP_MASK;
-
- /* now handle rest of the digits */
- for (ix = 1; ix < a->used; ix++) {
- *tmpc = *tmpa++ + mu;
- mu = *tmpc >> DIGIT_BIT;
- *tmpc++ &= MP_MASK;
- }
- /* set final carry */
- ix++;
- *tmpc++ = mu;
-
- /* setup size */
- c->used = a->used + 1;
- } else {
- /* a was negative and |a| < b */
- c->used = 1;
-
- /* the result is a single digit */
- if (a->used == 1) {
- *tmpc++ = b - a->dp[0];
- } else {
- *tmpc++ = b;
- }
-
- /* setup count so the clearing of oldused
- * can fall through correctly
- */
- ix = 1;
- }
-
- /* now zero to oldused */
- while (ix++ < oldused) {
- *tmpc++ = 0;
- }
- mp_clamp(c);
- return MP_OKAY;
-}
-
-
-/******************************************************************************/
-
-#endif /* USE_MPI2 */