/* vi: set sw=4 ts=4: */ /* * Based on shasum from http://www.netsw.org/crypto/hash/ * Majorly hacked up to use Dr Brian Gladman's sha1 code * * Copyright (C) 2002 Dr Brian Gladman , Worcester, UK. * Copyright (C) 2003 Glenn L. McGrath * Copyright (C) 2003 Erik Andersen * * Licensed under GPLv2 or later, see file LICENSE in this tarball for details. * * --------------------------------------------------------------------------- * Issue Date: 10/11/2002 * * This is a byte oriented version of SHA1 that operates on arrays of bytes * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor * * --------------------------------------------------------------------------- * * SHA256 and SHA512 parts are: * Released into the Public Domain by Ulrich Drepper . * Shrank by Denys Vlasenko. * * --------------------------------------------------------------------------- * * The best way to test random blocksizes is to go to coreutils/md5_sha1_sum.c * and replace "4096" with something like "2000 + time(NULL) % 2097", * then rebuild and compare "shaNNNsum bigfile" results. */ #include "libbb.h" #define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n)))) #define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n)))) /* for sha512: */ #define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n)))) #if BB_LITTLE_ENDIAN static inline uint64_t hton64(uint64_t v) { return (((uint64_t)htonl(v)) << 32) | htonl(v >> 32); } #else #define hton64(v) (v) #endif #define ntoh64(v) hton64(v) /* To check alignment gcc has an appropriate operator. Other compilers don't. */ #if defined(__GNUC__) && __GNUC__ >= 2 # define UNALIGNED_P(p,type) (((uintptr_t) p) % __alignof__(type) != 0) #else # define UNALIGNED_P(p,type) (((uintptr_t) p) % sizeof(type) != 0) #endif static void FAST_FUNC sha1_process_block64(sha1_ctx_t *ctx) { unsigned t; uint32_t W[80], a, b, c, d, e; const uint32_t *words = (uint32_t*) ctx->wbuffer; for (t = 0; t < 16; ++t) { W[t] = ntohl(*words); words++; } for (/*t = 16*/; t < 80; ++t) { uint32_t T = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]; W[t] = rotl32(T, 1); } a = ctx->hash[0]; b = ctx->hash[1]; c = ctx->hash[2]; d = ctx->hash[3]; e = ctx->hash[4]; /* Reverse byte order in 32-bit words */ #define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) #define parity(x,y,z) ((x) ^ (y) ^ (z)) #define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y)))) /* A normal version as set out in the FIPS. This version uses */ /* partial loop unrolling and is optimised for the Pentium 4 */ #define rnd(f,k) \ do { \ uint32_t T = a; \ a = rotl32(a, 5) + f(b, c, d) + e + k + W[t]; \ e = d; \ d = c; \ c = rotl32(b, 30); \ b = T; \ } while (0) for (t = 0; t < 20; ++t) rnd(ch, 0x5a827999); for (/*t = 20*/; t < 40; ++t) rnd(parity, 0x6ed9eba1); for (/*t = 40*/; t < 60; ++t) rnd(maj, 0x8f1bbcdc); for (/*t = 60*/; t < 80; ++t) rnd(parity, 0xca62c1d6); #undef ch #undef parity #undef maj #undef rnd ctx->hash[0] += a; ctx->hash[1] += b; ctx->hash[2] += c; ctx->hash[3] += d; ctx->hash[4] += e; } /* Constants for SHA512 from FIPS 180-2:4.2.3. * SHA256 constants from FIPS 180-2:4.2.2 * are the most significant half of first 64 elements * of the same array. */ static const uint64_t sha_K[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, /* [64]+ are used for sha512 only */ 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; static void FAST_FUNC sha256_process_block64(sha256_ctx_t *ctx) { unsigned t; uint32_t W[64], a, b, c, d, e, f, g, h; const uint32_t *words = (uint32_t*) ctx->wbuffer; /* Operators defined in FIPS 180-2:4.1.2. */ #define Ch(x, y, z) ((x & y) ^ (~x & z)) #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) #define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22)) #define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25)) #define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3)) #define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10)) /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ for (t = 0; t < 16; ++t) { W[t] = ntohl(*words); words++; } for (/*t = 16*/; t < 64; ++t) W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; a = ctx->hash[0]; b = ctx->hash[1]; c = ctx->hash[2]; d = ctx->hash[3]; e = ctx->hash[4]; f = ctx->hash[5]; g = ctx->hash[6]; h = ctx->hash[7]; /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ for (t = 0; t < 64; ++t) { /* Need to fetch upper half of sha_K[t] * (I hope compiler is clever enough to just fetch * upper half) */ uint32_t K_t = sha_K[t] >> 32; uint32_t T1 = h + S1(e) + Ch(e, f, g) + K_t + W[t]; uint32_t T2 = S0(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } #undef Ch #undef Maj #undef S0 #undef S1 #undef R0 #undef R1 /* Add the starting values of the context according to FIPS 180-2:6.2.2 step 4. */ ctx->hash[0] += a; ctx->hash[1] += b; ctx->hash[2] += c; ctx->hash[3] += d; ctx->hash[4] += e; ctx->hash[5] += f; ctx->hash[6] += g; ctx->hash[7] += h; } static void FAST_FUNC sha512_process_block128(sha512_ctx_t *ctx) { unsigned t; uint64_t W[80]; /* On i386, having assignments here (not later as sha256 does) * produces 99 bytes smaller code with gcc 4.3.1 */ uint64_t a = ctx->hash[0]; uint64_t b = ctx->hash[1]; uint64_t c = ctx->hash[2]; uint64_t d = ctx->hash[3]; uint64_t e = ctx->hash[4]; uint64_t f = ctx->hash[5]; uint64_t g = ctx->hash[6]; uint64_t h = ctx->hash[7]; const uint64_t *words = (uint64_t*) ctx->wbuffer; /* Operators defined in FIPS 180-2:4.1.2. */ #define Ch(x, y, z) ((x & y) ^ (~x & z)) #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) #define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39)) #define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41)) #define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7)) #define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6)) /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */ for (t = 0; t < 16; ++t) { W[t] = ntoh64(*words); words++; } for (/*t = 16*/; t < 80; ++t) W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; /* The actual computation according to FIPS 180-2:6.3.2 step 3. */ for (t = 0; t < 80; ++t) { uint64_t T1 = h + S1(e) + Ch(e, f, g) + sha_K[t] + W[t]; uint64_t T2 = S0(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } #undef Ch #undef Maj #undef S0 #undef S1 #undef R0 #undef R1 /* Add the starting values of the context according to FIPS 180-2:6.3.2 step 4. */ ctx->hash[0] += a; ctx->hash[1] += b; ctx->hash[2] += c; ctx->hash[3] += d; ctx->hash[4] += e; ctx->hash[5] += f; ctx->hash[6] += g; ctx->hash[7] += h; } void FAST_FUNC sha1_begin(sha1_ctx_t *ctx) { ctx->hash[0] = 0x67452301; ctx->hash[1] = 0xefcdab89; ctx->hash[2] = 0x98badcfe; ctx->hash[3] = 0x10325476; ctx->hash[4] = 0xc3d2e1f0; ctx->total64 = 0; ctx->process_block = sha1_process_block64; } static const uint32_t init256[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; static const uint32_t init512_lo[] = { 0xf3bcc908, 0x84caa73b, 0xfe94f82b, 0x5f1d36f1, 0xade682d1, 0x2b3e6c1f, 0xfb41bd6b, 0x137e2179 }; /* Initialize structure containing state of computation. (FIPS 180-2:5.3.2) */ void FAST_FUNC sha256_begin(sha256_ctx_t *ctx) { memcpy(ctx->hash, init256, sizeof(init256)); ctx->total64 = 0; ctx->process_block = sha256_process_block64; } /* Initialize structure containing state of computation. (FIPS 180-2:5.3.3) */ void FAST_FUNC sha512_begin(sha512_ctx_t *ctx) { int i; for (i = 0; i < 8; i++) ctx->hash[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i]; ctx->total64[0] = ctx->total64[1] = 0; } /* Used also for sha256 */ void FAST_FUNC sha1_hash(const void *buffer, size_t len, sha1_ctx_t *ctx) { unsigned in_buf = ctx->total64 & 63; unsigned add = 64 - in_buf; ctx->total64 += len; while (len >= add) { /* transfer whole blocks while possible */ memcpy(ctx->wbuffer + in_buf, buffer, add); buffer = (const char *)buffer + add; len -= add; add = 64; in_buf = 0; ctx->process_block(ctx); } memcpy(ctx->wbuffer + in_buf, buffer, len); } void FAST_FUNC sha512_hash(const void *buffer, size_t len, sha512_ctx_t *ctx) { unsigned in_buf = ctx->total64[0] & 127; unsigned add = 128 - in_buf; /* First increment the byte count. FIPS 180-2 specifies the possible length of the file up to 2^128 _bits_. We compute the number of _bytes_ and convert to bits later. */ ctx->total64[0] += len; if (ctx->total64[0] < len) ctx->total64[1]++; while (len >= add) { /* transfer whole blocks while possible */ memcpy(ctx->wbuffer + in_buf, buffer, add); buffer = (const char *)buffer + add; len -= add; add = 128; in_buf = 0; sha512_process_block128(ctx); } memcpy(ctx->wbuffer + in_buf, buffer, len); } /* Used also for sha256 */ void FAST_FUNC sha1_end(void *resbuf, sha1_ctx_t *ctx) { unsigned i, pad, in_buf; in_buf = ctx->total64 & 63; /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */ ctx->wbuffer[in_buf++] = 0x80; /* This loop iterates either once or twice, no more, no less */ while (1) { pad = 64 - in_buf; memset(ctx->wbuffer + in_buf, 0, pad); in_buf = 0; /* Do we have enough space for the length count? */ if (pad >= 8) { /* Store the 64-bit counter of bits in the buffer in BE format */ uint64_t t = ctx->total64 << 3; t = hton64(t); /* wbuffer is suitably aligned for this */ *(uint64_t *) (&ctx->wbuffer[64 - 8]) = t; } ctx->process_block(ctx); if (pad >= 8) break; } in_buf = (ctx->process_block == sha1_process_block64) ? 5 : 8; /* This way we do not impose alignment constraints on resbuf: */ #if BB_LITTLE_ENDIAN for (i = 0; i < in_buf; ++i) ctx->hash[i] = htonl(ctx->hash[i]); #endif memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * in_buf); } void FAST_FUNC sha512_end(void *resbuf, sha512_ctx_t *ctx) { unsigned i, pad, in_buf; in_buf = ctx->total64[0] & 127; /* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0... * (FIPS 180-2:5.1.2) */ ctx->wbuffer[in_buf++] = 0x80; while (1) { pad = 128 - in_buf; memset(ctx->wbuffer + in_buf, 0, pad); in_buf = 0; if (pad >= 16) { /* Store the 128-bit counter of bits in the buffer in BE format */ uint64_t t; t = ctx->total64[0] << 3; t = hton64(t); *(uint64_t *) (&ctx->wbuffer[128 - 8]) = t; t = (ctx->total64[1] << 3) | (ctx->total64[0] >> 61); t = hton64(t); *(uint64_t *) (&ctx->wbuffer[128 - 16]) = t; } sha512_process_block128(ctx); if (pad >= 16) break; } #if BB_LITTLE_ENDIAN for (i = 0; i < ARRAY_SIZE(ctx->hash); ++i) ctx->hash[i] = hton64(ctx->hash[i]); #endif memcpy(resbuf, ctx->hash, sizeof(ctx->hash)); }