/* * A tiny 'top' utility. * * This is written specifically for the linux /proc//stat(m) * files format. * This reads the PIDs of all processes and their status and shows * the status of processes (first ones that fit to screen) at given * intervals. * * NOTES: * - At startup this changes to /proc, all the reads are then * relative to that. * * (C) Eero Tamminen * * Rewroted by Vladimir Oleynik (C) 2002 */ /* Original code Copyrights */ /* * Copyright (c) 1992 Branko Lankester * Copyright (c) 1992 Roger Binns * Copyright (C) 1994-1996 Charles L. Blake. * Copyright (C) 1992-1998 Michael K. Johnson * May be distributed under the conditions of the * GNU Library General Public License */ #include #include #include #include #include #include /* get page info */ #include #include "busybox.h" //#define FEATURE_CPU_USAGE_PERCENTAGE /* + 2k */ #ifdef FEATURE_CPU_USAGE_PERCENTAGE #include #include #include #include /* htons */ #endif typedef int (*cmp_t)(procps_status_t *P, procps_status_t *Q); static procps_status_t *top; /* Hehe */ static int ntop; static int pid_sort (procps_status_t *P, procps_status_t *Q) { int p = P->pid; int q = Q->pid; if( p < q ) return -1; if( p > q ) return 1; return 0; } static int mem_sort (procps_status_t *P, procps_status_t *Q) { long p = P->rss; long q = Q->rss; if( p > q ) return -1; if( p < q ) return 1; return 0; } #ifdef FEATURE_CPU_USAGE_PERCENTAGE #define sort_depth 3 static cmp_t sort_function[sort_depth]; static int pcpu_sort (procps_status_t *P, procps_status_t *Q) { int p = P->pcpu; int q = Q->pcpu; if( p > q ) return -1; if( p < q ) return 1; return 0; } static int time_sort (procps_status_t *P, procps_status_t *Q) { long p = P->stime; long q = Q->stime; p += P->utime; q += Q->utime; if( p > q ) return -1; if( p < q ) return 1; return 0; } int mult_lvl_cmp(void* a, void* b) { int i, cmp_val; for(i = 0; i < sort_depth; i++) { cmp_val = (*sort_function[i])(a, b); if (cmp_val != 0) return cmp_val; } return 0; } /* This structure stores some critical information from one frame to the next. mostly used for sorting. Added cumulative and resident fields. */ struct save_hist { int ticks; int pid; int utime; int stime; }; /* * Calculates percent cpu usage for each task. */ static struct save_hist *save_history; static unsigned long Hertz; /*********************************************************************** * Some values in /proc are expressed in units of 1/HZ seconds, where HZ * is the kernel clock tick rate. One of these units is called a jiffy. * The HZ value used in the kernel may vary according to hacker desire. * According to Linus Torvalds, this is not true. He considers the values * in /proc as being in architecture-dependant units that have no relation * to the kernel clock tick rate. Examination of the kernel source code * reveals that opinion as wishful thinking. * * In any case, we need the HZ constant as used in /proc. (the real HZ value * may differ, but we don't care) There are several ways we could get HZ: * * 1. Include the kernel header file. If it changes, recompile this library. * 2. Use the sysconf() function. When HZ changes, recompile the C library! * 3. Ask the kernel. This is obviously correct... * * Linus Torvalds won't let us ask the kernel, because he thinks we should * not know the HZ value. Oh well, we don't have to listen to him. * Someone smuggled out the HZ value. :-) * * This code should work fine, even if Linus fixes the kernel to match his * stated behavior. The code only fails in case of a partial conversion. * */ #define FILE_TO_BUF(filename, fd) do{ \ if (fd == -1 && (fd = open(filename, O_RDONLY)) == -1) { \ bb_perror_msg_and_die("/proc not be mounted?"); \ } \ lseek(fd, 0L, SEEK_SET); \ if ((local_n = read(fd, buf, sizeof buf - 1)) < 0) { \ bb_perror_msg_and_die("%s", filename); \ } \ buf[local_n] = '\0'; \ }while(0) #define FILE_TO_BUF2(filename, fd) do{ \ lseek(fd, 0L, SEEK_SET); \ if ((local_n = read(fd, buf, sizeof buf - 1)) < 0) { \ bb_perror_msg_and_die("%s", filename); \ } \ buf[local_n] = '\0'; \ }while(0) static void init_Hertz_value(void) { unsigned long user_j, nice_j, sys_j, other_j; /* jiffies (clock ticks) */ double up_1, up_2, seconds; unsigned long jiffies, h; char buf[80]; int uptime_fd = -1; int stat_fd = -1; long smp_num_cpus = sysconf(_SC_NPROCESSORS_CONF); if(smp_num_cpus<1) smp_num_cpus=1; do { int local_n; FILE_TO_BUF("uptime", uptime_fd); up_1 = strtod(buf, 0); FILE_TO_BUF("stat", stat_fd); sscanf(buf, "cpu %lu %lu %lu %lu", &user_j, &nice_j, &sys_j, &other_j); FILE_TO_BUF2("uptime", uptime_fd); up_2 = strtod(buf, 0); } while((long)( (up_2-up_1)*1000.0/up_1 )); /* want under 0.1% error */ close(uptime_fd); close(stat_fd); jiffies = user_j + nice_j + sys_j + other_j; seconds = (up_1 + up_2) / 2; h = (unsigned long)( (double)jiffies/seconds/smp_num_cpus ); /* actual values used by 2.4 kernels: 32 64 100 128 1000 1024 1200 */ switch(h){ case 30 ... 34 : Hertz = 32; break; /* ia64 emulator */ case 48 ... 52 : Hertz = 50; break; case 58 ... 62 : Hertz = 60; break; case 63 ... 65 : Hertz = 64; break; /* StrongARM /Shark */ case 95 ... 105 : Hertz = 100; break; /* normal Linux */ case 124 ... 132 : Hertz = 128; break; /* MIPS, ARM */ case 195 ... 204 : Hertz = 200; break; /* normal << 1 */ case 253 ... 260 : Hertz = 256; break; case 295 ... 304 : Hertz = 300; break; /* 3 cpus */ case 393 ... 408 : Hertz = 400; break; /* normal << 2 */ case 495 ... 504 : Hertz = 500; break; /* 5 cpus */ case 595 ... 604 : Hertz = 600; break; /* 6 cpus */ case 695 ... 704 : Hertz = 700; break; /* 7 cpus */ case 790 ... 808 : Hertz = 800; break; /* normal << 3 */ case 895 ... 904 : Hertz = 900; break; /* 9 cpus */ case 990 ... 1010 : Hertz = 1000; break; /* ARM */ case 1015 ... 1035 : Hertz = 1024; break; /* Alpha, ia64 */ case 1095 ... 1104 : Hertz = 1100; break; /* 11 cpus */ case 1180 ... 1220 : Hertz = 1200; break; /* Alpha */ default: /* If 32-bit or big-endian (not Alpha or ia64), assume HZ is 100. */ Hertz = (sizeof(long)==sizeof(int) || htons(999)==999) ? 100UL : 1024UL; } } static void do_stats(void) { struct timeval t; static struct timeval oldtime; struct timezone timez; float elapsed_time; procps_status_t *cur; int total_time, i, n; static int prev_count; int systime, usrtime, pid; struct save_hist *New_save_hist; /* * Finds the current time (in microseconds) and calculates the time * elapsed since the last update. */ gettimeofday(&t, &timez); elapsed_time = (t.tv_sec - oldtime.tv_sec) + (float) (t.tv_usec - oldtime.tv_usec) / 1000000.0; oldtime.tv_sec = t.tv_sec; oldtime.tv_usec = t.tv_usec; New_save_hist = alloca(sizeof(struct save_hist)*ntop); /* * Make a pass through the data to get stats. */ for(n = 0; n < ntop; n++) { cur = top + n; /* * Calculate time in cur process. Time is sum of user time * (usrtime) plus system time (systime). */ systime = cur->stime; usrtime = cur->utime; pid = cur->pid; total_time = systime + usrtime; New_save_hist[n].ticks = total_time; New_save_hist[n].pid = pid; New_save_hist[n].stime = systime; New_save_hist[n].utime = usrtime; /* find matching entry from previous pass */ for (i = 0; i < prev_count; i++) { if (save_history[i].pid == pid) { total_time -= save_history[i].ticks; systime -= save_history[i].stime; usrtime -= save_history[i].utime; break; } } /* * Calculate percent cpu time for cur task. */ i = (total_time * 10 * 100/Hertz) / elapsed_time; if (i > 999) i = 999; cur->pcpu = i; } /* * Save cur frame's information. */ free(save_history); save_history = memcpy(xmalloc(sizeof(struct save_hist)*n), New_save_hist, sizeof(struct save_hist)*n); prev_count = n; qsort(top, n, sizeof(procps_status_t), (void*)mult_lvl_cmp); } #else static cmp_t sort_function; #endif /* FEATURE_CPU_USAGE_PERCENTAGE */ /* display generic info (meminfo / loadavg) */ static unsigned long display_generic(void) { FILE *fp; char buf[80]; float avg1, avg2, avg3; unsigned long total, used, mfree, shared, buffers, cached; /* read memory info */ fp = bb_xfopen("meminfo", "r"); fgets(buf, sizeof(buf), fp); /* skip first line */ if (fscanf(fp, "Mem: %lu %lu %lu %lu %lu %lu", &total, &used, &mfree, &shared, &buffers, &cached) != 6) { bb_error_msg_and_die("failed to read '%s'", "meminfo"); } fclose(fp); /* read load average */ fp = bb_xfopen("loadavg", "r"); if (fscanf(fp, "%f %f %f", &avg1, &avg2, &avg3) != 3) { bb_error_msg_and_die("failed to read '%s'", "loadavg"); } fclose(fp); /* convert to kilobytes */ used /= 1024; mfree /= 1024; shared /= 1024; buffers /= 1024; cached /= 1024; /* output memory info and load average */ /* clear screen & go to top */ printf("\e[H\e[J" "Mem: " "%ldK used, %ldK free, %ldK shrd, %ldK buff, %ldK cached\n", used, mfree, shared, buffers, cached); printf("Load average: %.2f, %.2f, %.2f " "(State: S=sleeping R=running, W=waiting)\n", avg1, avg2, avg3); return total / 1024; } /* display process statuses */ static void display_status(int count, int col) { procps_status_t *s = top; char rss_str_buf[8]; unsigned long total_memory = display_generic(); #ifdef FEATURE_CPU_USAGE_PERCENTAGE /* what info of the processes is shown */ printf("\n\e[7m PID USER STATUS RSS PPID %%CPU %%MEM COMMAND\e[0m\n"); #else printf("\n\e[7m PID USER STATUS RSS PPID %%MEM COMMAND\e[0m\n"); #endif while (count--) { char *namecmd = s->short_cmd; int pmem; pmem = 1000.0 * s->rss / total_memory; if (pmem > 999) pmem = 999; if(s->rss > 10*1024) sprintf(rss_str_buf, "%6ldM", s->rss/1024); else sprintf(rss_str_buf, "%7ld", s->rss); #ifdef FEATURE_CPU_USAGE_PERCENTAGE printf("%5d %-8s %s %s %5d %2d.%d %2u.%u ", #else printf("%5d %-8s %s %s %5d %2u.%u ", #endif s->pid, s->user, s->state, rss_str_buf, s->ppid, #ifdef FEATURE_CPU_USAGE_PERCENTAGE s->pcpu/10, s->pcpu%10, #endif pmem/10, pmem%10); if(strlen(namecmd) > col) namecmd[col] = 0; printf("%s\n", namecmd); s++; } } static void clearmems(void) { free(top); top = 0; ntop = 0; } #if defined CONFIG_FEATURE_USE_TERMIOS #include #include #include static struct termios initial_settings; static void reset_term(void) { tcsetattr(0, TCSANOW, (void *) &initial_settings); #ifdef CONFIG_FEATURE_CLEAN_UP clearmems(); #ifdef FEATURE_CPU_USAGE_PERCENTAGE free(save_history); #endif #endif /* CONFIG_FEATURE_CLEAN_UP */ } static void sig_catcher (int sig) { reset_term(); } #endif /* CONFIG_FEATURE_USE_TERMIOS */ int top_main(int argc, char **argv) { int opt, interval, lines, col; #if defined CONFIG_FEATURE_USE_TERMIOS struct termios new_settings; struct timeval tv; fd_set readfds; unsigned char c; struct sigaction sa; #if defined CONFIG_FEATURE_AUTOWIDTH struct winsize win = { 0, 0, 0, 0 }; #endif #endif /* CONFIG_FEATURE_USE_TERMIOS */ /* Default update rate is 5 seconds */ interval = 5; /* do normal option parsing */ while ((opt = getopt(argc, argv, "d:")) > 0) { switch (opt) { case 'd': interval = atoi(optarg); break; default: bb_show_usage(); } } /* Default to 25 lines - 5 lines for status */ lines = 25 - 5; /* Default CMD format size */ #ifdef FEATURE_CPU_USAGE_PERCENTAGE col = 35 - 6; #else col = 35; #endif /* change to /proc */ if (chdir("/proc") < 0) { bb_perror_msg_and_die("chdir('/proc')"); } #if defined CONFIG_FEATURE_USE_TERMIOS tcgetattr(0, (void *) &initial_settings); memcpy(&new_settings, &initial_settings, sizeof(struct termios)); new_settings.c_lflag &= ~(ISIG | ICANON); /* unbuffered input */ /* Turn off echoing */ new_settings.c_lflag &= ~(ECHO | ECHONL); signal (SIGTERM, sig_catcher); sigaction (SIGTERM, (struct sigaction *) 0, &sa); sa.sa_flags |= SA_RESTART; sa.sa_flags &= ~SA_INTERRUPT; sigaction (SIGTERM, &sa, (struct sigaction *) 0); sigaction (SIGINT, &sa, (struct sigaction *) 0); tcsetattr(0, TCSANOW, (void *) &new_settings); atexit(reset_term); #if defined CONFIG_FEATURE_AUTOWIDTH ioctl(0, TIOCGWINSZ, &win); if (win.ws_row > 4) { lines = win.ws_row - 5; #ifdef FEATURE_CPU_USAGE_PERCENTAGE col = win.ws_col - 80 + 35 - 6; #else col = win.ws_col - 80 + 35; #endif } #endif #endif /* CONFIG_FEATURE_USE_TERMIOS */ #ifdef FEATURE_CPU_USAGE_PERCENTAGE sort_function[0] = pcpu_sort; sort_function[1] = mem_sort; sort_function[2] = time_sort; #else sort_function = mem_sort; #endif while (1) { /* read process IDs & status for all the processes */ procps_status_t * p; #ifdef CONFIG_SELINUX while ((p = procps_scan(0, 0, NULL) ) != 0) { #else while ((p = procps_scan(0)) != 0) { #endif int n = ntop; top = xrealloc(top, (++ntop)*sizeof(procps_status_t)); memcpy(top + n, p, sizeof(procps_status_t)); } if (ntop == 0) { bb_perror_msg_and_die("scandir('/proc')"); } #ifdef FEATURE_CPU_USAGE_PERCENTAGE if(!Hertz) { init_Hertz_value(); do_stats(); sleep(1); clearmems(); continue; } do_stats(); #else qsort(top, ntop, sizeof(procps_status_t), (void*)sort_function); #endif opt = lines; if (opt > ntop) { opt = ntop; } /* show status for each of the processes */ display_status(opt, col); #if defined CONFIG_FEATURE_USE_TERMIOS tv.tv_sec = interval; tv.tv_usec = 0; FD_ZERO (&readfds); FD_SET (0, &readfds); select (1, &readfds, NULL, NULL, &tv); if (FD_ISSET (0, &readfds)) { if (read (0, &c, 1) <= 0) { /* signal */ return EXIT_FAILURE; } if(c == 'q' || c == initial_settings.c_cc[VINTR]) return EXIT_SUCCESS; if(c == 'M') { #ifdef FEATURE_CPU_USAGE_PERCENTAGE sort_function[0] = mem_sort; sort_function[1] = pcpu_sort; sort_function[2] = time_sort; #else sort_function = mem_sort; #endif } #ifdef FEATURE_CPU_USAGE_PERCENTAGE if(c == 'P') { sort_function[0] = pcpu_sort; sort_function[1] = mem_sort; sort_function[2] = time_sort; } if(c == 'T') { sort_function[0] = time_sort; sort_function[1] = mem_sort; sort_function[2] = pcpu_sort; } #endif if(c == 'N') { #ifdef FEATURE_CPU_USAGE_PERCENTAGE sort_function[0] = pid_sort; #else sort_function = pid_sort; #endif } } #else sleep(interval); #endif /* CONFIG_FEATURE_USE_TERMIOS */ clearmems(); } return EXIT_SUCCESS; }