
Generating Keys for MatrixSSL   

Page 1 of 7  Copyright ©2002-2006 PeerSec Networks, Inc. 

Working with Certificate and Key Files in MatrixSSL 
Generating Certificates for use with MatrixSSL 
The most common way to obtain a certificate is to buy one from a commercial certificate 
authority.  This will result in a public key that has been digitally signed by a trusted third-
party so that clients using the certificate can be very sure they are communicating with 
the entity they think they are.  However, in a trusted environment it is possible to use an 
unsigned certificate or to create an in-house CA to self-sign the certificate. 
 
The open source version of MatrixSSL is designed as an embedded library to enable SSL 
for devices and does not contain code to generate keys or certificates.  Please contact 
PeerSec Networks if you have a project that requires RSA key generation and certificate 
creation and would like more information on the commercial features of MatrixSSL. 
 
This document describes how to use the standard OpenSSL package to generate 
certificates.  It contains complete instructions on how to obtain your own certificates 
suitable for use with MatrixSSL.  For instructions on how to use these keys with 
MatrixSSL are provided in the MatrixSSL developers guide and the MatrixSSL API 
document. 

Using the OpenSSL package to create certificates 
OpenSSL is a widely used SSL toolkit available for free download at 
http://www.openssl.org.  It comes with a command line utility for generating keys, 
creating CAs, and creating certificates.  The following instructions assume the OpenSSL 
package has been installed and configured properly.  These instructions will walk you 
through using OpenSSL to create an unsigned certificate, to create a Certificate Authority 
to sign your own certificates, and to generate the proper requests in order to receive a 
signed certificate from a commercial CA. 

Creating an unsigned certificate 
The certificate generated from these steps should never be used in any environment other 
than for internal testing purposes.  The private key file is generated in an unencrypted 
format and the certificate is created from a generic configuration supplied in the 
OpenSSL package. 
 

1. Create an RSA key 
With the OpenSSL package installed, create an empty directory to work in.  From 
the command prompt type the following to generate an unencrypted privkey.pem 
file with a 1024 bit key: 
 
openssl genrsa -out privkey.pem 1024 

 
2. Create a test certificate  
OpenSSL uses a configuration text file to read information about the certificate 
being generated.  This file is typically created or edited to suit the specific details 



Generating Keys for MatrixSSL   

Page 2 of 7  Copyright ©2002-2006 PeerSec Networks, Inc. 

of the subject, but there is a test configuration file provided in the OpenSSL 
distribution.  The file is named test.cnf and can be found in the top level test 
directory of where the OpenSSL distribution was installed.   In order for the file to 
be found a system environment variable called OPENSSL_CONF must be set to 
reference that specific file.   
 
On a Linux system type the following to set the environment variable (assuming 
an installation directory of /OpenSSL): 
  
export OPENSSL_CONF=/OpenSSL/test/test.cnf 

 
On a Windows system type the following to set the environment variable 
(assuming an installation directory of C:\OpenSSL): 

 
set OPENSSL_CONF=C:\OpenSSL\test\test.cnf 

 
Now the certificate can be generated with the following command (all text is a 
single command typed on one line): 
 
openssl req -new -x509 -key privkey.pem -out cert.pem -days 1095 

 
There should now be a cert.pem and privkey.pem file in the current directory for 
use in testing a MatrixSSL session. 

Creating a Certificate Authority to sign your own certificates 
The certificate generated from these steps could potentially be suitable for use outside a 
testing environment.  In this case you are the trusted authority, so the users of these 
certificates would have to be confident of your identity.  For example, off-site users of a 
corporate network could secure their communications with the company network using 
certificates signed by a company created Certificate Authority. 
 
For this example we will create a test Certificate Authority.  In order to store the files 
created, create an empty directory called testCA with the subfolders certs and private. 
The testCA directory should be the working directory of the command shell when 
following these instructions. 
 

1. Create the test CA environment 
The creation of a CA will produce several files that should be preserved 
throughout the life of the CA.  You can sign an unlimited number of certificates 
with a single CA, these files will be written to each time you sign a certificate. 
 

a. Create a new file named serial and add 01 as the only text 
 
b. Create an empty file named index.txt 

 
2. Create the test CA configuration file 



Generating Keys for MatrixSSL   

Page 3 of 7  Copyright ©2002-2006 PeerSec Networks, Inc. 

While you could simply enter all the configuration information into the command 
line, creating a configuration file makes these steps much easier to reproduce and 
allows you to save the options used to create a CA.   
 
Create a new file named CAcnf.cnf and add the following basic CA configuration 
information:   
 
[ ca ] 
default_ca = exampleca 
 
[ exampleca ] 
dir =    /testCA 
certificate = $dir/cacert.pem 
database =  $dir/index.txt 
new_certs_dir = $dir/certs 
private_key = $dir/private/caprivkey.pem 
serial =  $dir/serial 
 
default_crl_days = 7 
default_days =  365 
default_md =   md5 
 
policy = exampleca_policy 
x509_extensions = certificate_extensions 
 
[ exampleca_policy ] 
commonName =    supplied 
stateOrProvinceName =  supplied 
countryName =   supplied 
emailAddress =   supplied 
organizationName =  supplied 
organizationalUnitName = optional 
 
[ certificate_extensions ] 
basicConstraints = CA:false 
 
[ req ] 
dir =   /testCA 
default_bits = 1024 
default_keyfile = $dir/private/caprivkey.pem 
default_md =  md5 
 
prompt =   no 
distinguished_name = root_ca_dn 
x509_extensions =  root_ca_extensions 
 
[ root_ca_dn ] 
commonName =   My CA 
stateOrProvinceName = Washington 
countryName =  US 
emailAddress =  myemail@mydomain.com 
organizationName = My Organization 
 
[ root_ca_extensions ] 
basicConstraints = CA:true 



Generating Keys for MatrixSSL   

Page 4 of 7  Copyright ©2002-2006 PeerSec Networks, Inc. 

 
The two dir entries should be set to the path to the testCA directory created 
earlier.  The root_ca_dn section could be changed to enter information specific to 
your organization, although for testing purposes this isn't necessary. 

 
3. Create a self-signed root certificate 
A certificate authority is essentially a self-signed root certificate.  This root 
certificate is then used to respond to new certificate requests to create a signed 
certificate.  In this case, we are the CA and the requestor so there are no identity 
verification issues, but in a more typical situation, a CA can only be trusted if they 
do sufficient background checks into the requestor of the certificate to verify their 
identity. 

a. Set the OPENSSL_CONF system environment variable to point to the 
newly created configuration file: 

  
OPENSSL_CONF=/testCA/CAcnf.cnf 
export OPENSSL_CONF 

 
- on a Windows system type the following - 
  

set OPENSSL_CONF=C:\testCA\CAcnf.cnf 

 
b. Enter the command to generate the self-signed root certificate (all text is a 
single command typed on one line): 

 
openssl req –x509 –newkey rsa –out cacert.pem –outform PEM 

 
c. You will then be prompted for a 'PEM pass phrase', this will be your 
password to the CA private key.  It is essential to the security of the system 
that this password and the CA private key are kept secret. 

   
At the conclusion of this step, there should be an encrypted caprivkey.pem in the 
private subdirectory that is the private key file for the CA.  There should also be a 
self-signed cacert.pem file in the top level of the testCA directory that will be 
used to sign new certificate requests in the next steps. 
 
4. Create a Certificate Request 
Now that the CA has been created, we can use it to sign new certificates.  In this 
example,  we're playing the role of the CA, the certificate subject, and the end-
user of the certificate so we don't have to worry about any trust issues.  But the 
typical process involves communication between the certificate subject(you) and 
a trusted CA.  Usually someone wishing to issue certificates to an end user would 
generate a certificate request file and submit it to the administrators of a CA.  
Once the administrators of the CA have determined the request to be valid, a self-
signed root certificate would be used to sign the certificate request and create a 
new certificate to be returned to requestor, and eventually the end user. 
 



Generating Keys for MatrixSSL   

Page 5 of 7  Copyright ©2002-2006 PeerSec Networks, Inc. 

a. Reset the OPENSSL_CONF environment variable to the default 
openssl.cnf file.  Generating a request has nothing to do with a CA before it is 
actually submitted.  It is safe to point OPENSSL_CONF to the default 
configuration file because it will force the request command to prompt the 
user for all information regarding the certificate request.  Set the environment 
variable to the default file by typing the following: 

 
OPENSSL_CONF=/OpenSSL/apps/openssl.cnf 
export OPENSSL_CONF 

 
- or on  Windows - 

 
 set OPENSSL_CONF=C:\OpenSSL\apps\openssl.cnf 

  
b. Generate the request with the following command (the text is one 
command to be typed on a single line) and answer all questions at the prompt: 

 
openssl req –newkey rsa:1024 –keyout myprivkey.pem –keyform PEM 
–out myreq.pem –outform PEM 

 
If you do not want an encrypted private key, add –nodes to the above command.  
At the conclusion of this step two new files will have been created.  The 
myprivkey.pem file containing the encrypted private key.  This file should never 
be shared, not even with the CA.   The other file is the certificate request file, 
myreq.pem, that will be used by the CA to create the final signed certificate. 
 
5. Use the test CA to issue the certificate 
The final step of the process is to use the CA self-signed certificate to sign the 
certificate and return it to the requestor (subject). 
 

a. Reset the OPENSSL_CONF system environment variable to reference the 
CA configuration file again. 

 
OPENSSL_CONF=/testCA/CAcnf.cnf 
export OPENSSL_CONF 

 
- on a Windows system type the following - 
  

 set OPENSSL_CONF=C:\testCA\CAcnf.cnf 

 
b. Assure that the request file is in the current directory and run the following 
command.  The prompt for the PEM password is the password to the CA 
private key file: 
 

openssl ca –in myreq.pem 
 

Answer 'y' at the next two prompts, then at the conclusion of this step, several 
files will have been updated and a new certificate will have been created.  The 



Generating Keys for MatrixSSL   

Page 6 of 7  Copyright ©2002-2006 PeerSec Networks, Inc. 

new certificate can be found in the certs subdirectory of the CA directory 
structure.  It will be named as the serial number it is associated with by the CA.  
The file can be renamed to whatever the subject would like, but the .pem 
extension should be preserved for clarity.  The serial file itself will have 
incremented its count for the next certificate request and the index.txt file will 
show a record of the creation. 

 
The new certificate file and the myprivkey.pem file are now suitable for use in 
MatrixSSL.  

Obtaining a certificate from a commercial certificate authority 
The certificate generated from these steps is suitable for use in a production environment 
(ie. an Internet Web Site conducting financial transactions).  
 

1. Create a certificate request 
A commercial certificate authority requires the subject to generate a certificate 
request to send to them.  The CA will then take the request along with payment 
and perform some background checks to verify the subject is a valid entity and 
return a digitally signed certificate.   

 
a. Set the OPENSSL_CONF system environment variable to the default 
openssl.cnf file.  It is safe to point OPENSSL_CONF to the default 
configuration file because it will force the request command to prompt the 
user for all information regarding the certificate request.  Set the environment 
variable to the default file by typing the following: 

 
OPENSSL_CONF=/OpenSSL/apps/openssl.cnf 
export OPENSSL_CONF 

 
- or on  Windows - 

 
 set OPENSSL_CONF=C:\OpenSSL\apps\openssl.cnf 

  
b. Generate the request with the following command (the text is one 
command to be typed on a single line) and answer all questions at the prompt: 

 
openssl req –newkey rsa:1024 –keyout myprivkey.pem –keyform PEM 
–out myreq.pem –outform PEM 

 
At the conclusion of this step two new files will have been created.  The 
myprivkey.pem file containing the encrypted private key.  Again, this file is never 
to be shared, not even with the CA.   The other file is the certificate request file, 
myreq.pem that will be sent to the CA to create the final signed certificate. 
 
2. Send the request to a CA 



Generating Keys for MatrixSSL   

Page 7 of 7  Copyright ©2002-2006 PeerSec Networks, Inc. 

Select a reputable CA and work within their guidelines for submitting a certificate 
request.  Choose to receive the returned certificate in an X.509 PEM format.  The 
resulting certificate along with the private key is suitable for use in MatrixSSL.   

 
 


