Library Interface V ersioning in Solarisand Linux

David J. Bravn and Karl Runge

Solaris Engineering, Sun Microsystems Inc.

Abstract

Sharedlibrariesin Solaris and Linux usea versioning
techniquewhich allows the link editor to record an
applications dependengon a particularreleasdevel of
the library. The versioningmechanisnoperatesat the
level of the library’s GLoBAL symbol names—afiner
granularity than simply associatinga version number
with the library itself.

In Solaris, thismechanisnhasalsobeenusedto provide
a meansfor the system-suppliedsharedlibraries to
definetheir applicationinterface:to declarespecifically
which of their symbolsareintendedfor applicationuse
(andarestablefrom onereleaseo the next), andwhich
areinternalto the system$ implementation(and hence
subject to incompatible change).

This paperdescribeghelibrary symbol-\ersioningtech-
nologyin Linux andSolaris, thewaysin whichit is used
to supportupward compatibility for existing compiled
applicationsrom onereleaseof Solaris to the next, and
the potential for similar mechanismgo be appliedin
Linux versioned shared libraries.

1 Introduction

As Linux continuedo grow in popularity andmorepeo-
ple cometo dependonit, issuesegardingcompatibility
will likely becomeincreasinglyimportant.in what fol-
lows we focus on a methodfor successie releaseof

systemsoftware, suchasLinux! or Solaris, to maintain
binary compatibility with existing applications. We
describesomepracticeshatarepresentlybeingusedin
Solaris (atthelevel of the systems library interfaces)}o
define and maintain an Application Binary Interface
(ABI). We further describehow this definition along
with anapproacho library interfaceversioninghelpsto

1. Whenwe usethetermLinux in this paperwe areusing
the common shorthand, and mean a complete aoftw
system based on a Linuetel (those pnaded by
RedHat, SuSE, or Debian GNU/Linux aramples).

ensure the stability of existing application binaries
across succesd Solaris releases.

The hopeis thatsome,if not all, of thesepracticescan
beincorporatednto thedevelopmenipracticesor Linux

librariesto helpincreasebinarystability for Linux appli-

cations.Due to the differencesn developmentmodels
betweenGNU/Linux and Solaris, someaspectf these
schemesnay needto be modifiedsuitablyto be benefi-
cial toLinux development.

2 The ABl—a basis br system interface
definition

Maintaining source-lgel or APl compatibility, is well
understood;less familiar is the idea of maintaining
binary-level, or ABI, compatibility The Solaris ABI
(applicationbinary interface)is the setof runtime inter-
facesn Solaris thatmaybedependediponby anappli-
cation;if the ABI evolvesin anupward-compatiblevay
from one releaseof Solaris to the next, then existing
compiledapplicationsbuilt on a given releasewill run
on all subsequenteleasesvithout change(i.e. thereis
no fear that the applicationwill breakwhenrun on a
later release of the system).

The enormousvalue of accessto source code may
obscurethefactthattherearemary end-usersvho can-
not exploit source-lgel compatibility and “simply”
recompiletheir applicationsasneededvhenthe system
software haschangedMost often it is large organiza-
tions, as comparedto individual usersor developers,
who arein this situation.The needfor the new systems
binary compatibility with their existing applications
may be becausehey do not have accesso the source
codefor certainapplicationsbut much more often the
logistical nightmareof recompiling,retestingandredis-
tributing the hundredor eventhousand®f applications
thatatypical large organizationrelieson, is the predom-
inant issue.

Consequentlyestablishinga clear runtimeinterfacefor
applicationsandmaintainingits binary compatibility is

an important requirementfor a supplier of operating
systemsoftware. The meansof satisfyingthat require-
mentis throughprecisedefinition of the systems appli-
cationbinaryinterface(ABI): If the producerof system
software maintainsthe integrity of thoseinterfaces,and
the developersof software productswhich rely on the
systemalsoabideby it (andonly useinterfacesbelong-
ing to the ABI) then compatibility is assured.

2.1 Defining the&olaris ABI

At Sun,we tendto think of the system(Solaris) asthe
provider of a setof servicesandtheseservicesare pri-
marily provided to application programsand/or other
layeredsoftware products which arebuilt andreleased
independently t&olaris.

To afirst approximationthe broadersetof systemser-
vicesareprovidedto applicationsby the setof libraries
suppliedas part of the system.While the kernelis the
underlyingfoundationfor this, as provider of the most
fundamentakervices(and therecan be a greatdeal of

focus on this, especiallyin the Linux ervironment),a

completesoftware systemrepresents good deal more
thanthekernelalone:Soin Solarisit is thesetof system
libraries,and more specificallythe particularinterfaces
offeredby thoselibraries,thatwe useto characteriz¢he
applications runtime interdice.

Importantly theseinterfacesareaccessetyy a compiled
software product(suchas an application)via dynamic
linking—bindingsmadeat runtime betweertheapplica-
tion andthe sharedbjectswhich implementthe system
libraries. The useof sharedibrariesis critically impor-
tantbecauselynamiclinking to thesdibrariesallows us
to maintaina clearseparatiorbetweera compiledappli-
cationandthe systemimplementation Focusingon the
runtimebinding interfacebetweenthe two is analogous
to defininga protocol,or may be thoughtof ascharac-
terizing the interdce to thesolaris virtual machine.

2.2 Defining system-internal intades

While the systemlibrariesprovide a setof interfacesto
allow applicationsaccesdo systemservicesmostsys-
tem libraries also expose some implementationinter-
face—makingvisible a broadersetof GLoBAL symbols
thanjust thoseintendedfor useby applications System
librarieswhich are“lower” in the systems implementa-
tion-architecturehierarcly can have intimate interde-
pendenciessotheselibrariesalsoexposesomesystem-
internal implementationinterfaces. These interfaces,
such as those neededin |i bc to support particular
semanticsn conjunctionwith | i bt hread or | i bnsl ,
are really part of the system$ implementation (as
opposedo its externaliinterface),and not intendedfor

application use. To distinguish these two classesof
interface, we define the folldng terms:

“Public” - interfaceswhich are intendedfor use by
applicationgand/orary otherlayeredsoftwareproducts
releasedasynchronouslyto Solaris), and which there-
fore have the upward compatiblewlution property;

and“Private” - interfaceswhich arenot intendedfor use
by applicationgor ary asynchronouslyeleasedayered
software component) pecauseheseinterfacesare part
of the internal implementationof Solaris, and do not
have the upvard compatiblewlution property

In the following sectionswherewe discusshow change
is managedye will befocusingon changego the Pub-
lic interface—namelythosesysteminterfaceshataffect
applications (or ary other layered software product
releasedasynchronously to the system software). In

Solaris we have not yet attemptedto provide for the
asynchronousreleaseof individual system libraries,
such as might be addressedby carefully managing
changeo theinterfacebetweersystemlibraries(i.e. the
Private,or internalimplementationnterfacemanifestoy

the libraries). The assumptionat present,therefore,is

that a releaseof the systemconstitutegandrequires)a
synchronous releaseof all the systemlibraries along
with the lernel.

3 Versioning

As a systemevolves, whetherby the addition of new
functionality or via changego the systems implemen-
tationof existing functionality (asarefrequentlydoneto
improve its quality or performance)thereis the needto
indicatethe kind of change This is important,because
applications,and other software products have been
constructedvhich dependuponthis functionality Since
changesto the systems$ interfacescan affect existing
applications,somemeansto indicatethe natureof the
changes made is highly desirable.

A particular property that we considerimportant, and
thatwe're trying to realize,is thatdevelopersof applica-
tions (andmary otherlayeredsoftwareproducts)canbe
insulatedfrom changesnadeto the systemthey rely on
for mary of the kinds of changeto that systems soft-
ware.

3.1 Kinds of change—"major”,
“micro” releases

minor” and

At the outsetis importantto definethe kinds of change
thatcanbeintroducedo a systemsoftwareproduct(and
which also apply at a finer granularity to individual

component®f a systemsoftwareproduct).In this paper

wewill focusspecificallyonthesystemslibraries,since
librariesarethe primary component®f the systemsoft-
ware which provide interfacesto other software prod-
ucts built to run on that system.The following three
terms define a simple taxonomy of changewhich is
applicable to all systems:

A majorreleasas anincompatiblechangeto the system
software, and implies that [some] applicationsdepen-
denton the earliermajor releasgspecificallythosethat

relied upon the specific featuresthat have changed
incompatibly)will needto be changedn orderto work

on the nes major release.

A minor releaseof the systemsoftware is an upwaid-

compatiblechange—oneavhich addssomenew inter-

faces,but maintainscompatibility for all existing inter-

faces. Applications (or other software products)
dependenbn anearlierminorreleasewill notneedto be
changedin order to work on the new minor release:
Sincethe laterreleasecontainsall the earlierinterfaces,
the change(s)impartedto the systemdoesnot affect

those applications.

A micro releasds a compatiblechangewhich doesnot

addary new interfaces:A changes madeto theimple-

mentation(suchasto improve performancescalability

or someotherqualitative property)but providesaninter-

faceequivalentto all othermicro revisionsat the same
minor level. Again, dependentapplications(or other

software products)will not needto be changedn order

to work on that releaseas the changeimpartedto the

system(or library) doesnot underminetheir dependen-
cies.

3.2 Managing changes to the system iafef

Now let's take alook at how the variouskinds of change
to systeminterfacesdescribedabose have beenman-
aged in some systems historically

Virtually all systemsthat we are aware of incorporate
some sort of versionnumberin the filenameof each
library, andmostsystemghatwe areawareof have had
some meansof recording both the major and minor

releaseconceptson a perlibrary basisin orderto indi-

cate and manageupward compatibility Historically,

several systemshave recorded minor and/or micro

releaselevels explicitly in the library’s filename: For

example,in Sequens Dynix[Huiz 97] andSuns SunOS
4.x (Solaris's OS componentprior to Solaris2, library

filenames were of the sort:

| i b<name>. so. <major>.<minor>

(for example,l i bc. so. 2. 9), andin Linux, library file-
namesoftenalsocontaina micro (or “release”)number
being of the sort:

I i b<name>. so. <major>.<minor>.<rls>

(for example|l i bz. 1. 1. 3).

3.2.1 Libary minor elease

When a library evolves compatibly existing interfaces
are presered, but new onesare added(as neededfor
example, when new functional contentis added).On
mary systemshis changeis reflectedin the library (or
libraries) affected by exhibiting both major and minor
version numbersin the library’s filename(e.g., i b-
f0o. so0. 1. 2) and incrementing the library’s minor
numberto indicatethat new interfaceswereadded(e.g.
toli bf oo. so. 1. 3) . Sincenothinghasbeendonethat
would breakapplicationsconstructecearlier (i.e. those
that were built using either! i bf co. so. 1.1 or li b-
f 0o. so. 1. 2), it is OK for theseolder applicationsto
be linked with the newer library at run-time (although
we have yetto describenow the applications dependen-
ciesarerecordedand how this is managedat runtime,
but will do so shortly).

3.2.2 Libary major elease

If theinterfacedn alibrary sharedbjectchangencom-
patibly, not only musttherebe away of indicatingthata
differentversionof thelibrary hasbeencreatedput also
of detectingapplicationbinariesthat were built using
the earlier edition of the library and preventing them
from linking at runtime with the library’s new major
release.

Analogousto a library’s minor release the systemor
library provider’s practiceis to updatethe major revi-
sionnumberassociatedvith thelibrary. Sofor example,
an incompatiblechangeto | i bf oo would requirethat
the successorto |ibfoo.so.1 be named lib-

f 0o. so. 2, or in the casethat both major and minor
numbersarereflectedin the library filename(asin our
precedingexample), the naming revision would, for
example,befrom|i bf oo. so. 1. 3toli bf co.s0. 2.1
(where 2.1 indicatesthe first minor releaseof major
release 2).

3.3 Hawv applications record library dependencies

Now while updating the major and/or minor version
numberon alibrary is a simpleway for the systemsoft-
ware or library provider to indicate the change,this
practice presumesof course,that there is also some
mechanismfor labelling applicationbinarieswith the
revision levels of the libraries they have used.And at
run-time,somemechanismmustbe presento ensurea

rendezvous of the application with an appropriate ver-
sion of each library it requires.

There must, at the very least, be away of marking appli-
cations with the name and major revision level of a
library they were built with to ensure that application
executables requiring a given major version of alibrary
(e.g. i bf oo.so.2) are not accidently linked with
another major version of the library, either alater (1 i b-
f 00. so0. 3) or earlier one (Ii bf oo. so. 1), since we
know that these are incompatible with the application.
Related to thisis that later releases of a system software
product, if they are to be able to run older application
binaries, must continue to provide earlier major edi-
tion(s) of the libraries, and have a mechanism for the
older applications to be linked at runtime to the major
version they require.

3.3.1 Historical Pactice

On some earlier systems, when an application was built,
the link editor simply recorded within the application
binary, the filenameof each library that it depended
upon (that is, a name containing the major and minor
number of the library present on the build platform).

At run time, upward compatibility could be handled by
the runtime linker’s explicit knowledge of the semantics
of the version numbers contained in the library filena-
mes. In SunOS 4.x for example, the runtime linker
would look for alibrary with the same name and same
major release number as that recorded as a dependency
in the application (and in the presence of multiple
minor-version instances of the library that match the
major number, the instance with the highest minor ver-
sion number is used) [Gingell 87].

If the minor version number of the library found on the
runtime platform was greater or equal to that of the
dependency recorded in the application binary, dynamic
linking proceeded silently (since the library must con-
tain all the content required). In the case that the minor
revision found on the runtime platform was lower than
that recorded in the binary SunOS 4.x had the policy of
issuing awarning diagnostic (that an earlier version had
been found), but alowing the runtime linking to pro-
ceed. The application might still run successfully if it
had only happened to depend on functional content (and
interfaces) present in the earlier release of the library. If
the application had depended on later content however, a
runtime relocation error would occur when the applica-
tion invoked an interface not present in the library on the
runtime platform. Other systems may have adopted a
more conservative policy and disallowed an application
to run if aminor release of at least equal minor revision

level to that required by the application was present on
the runtime platform.

Neither of these policiesis particularly satisfactory how-
ever, as the former might permit an application to run
whose dependencies can’'t be met, while the latter pre-
vents a class of applications whose interface dependen-
cies could be met (i.e. whose interface needs were
limited to content present in an earlier minor edition of
the library, but were built on platforms with later minor
editions), from being allowed to run on platforms bear-
ing an earlier edition of the library than the application
was built (and hence labelled) with, but which in fact
happened to provide everything the application actually
required.

3.4 The minor-version rendezvous problem

The important but somewhat subtle issue associated
with minor revision changes, just described, is that an
application built with a given minor release of alibrary
might, but cannotbe certainto run on an earlier minor
release level of the library. This is because the applica
tion may have used one or more of the interfaces added
to the library at a later minor release level, and not
present in the earlier one.

To resolve this problem we must know more than just
what minor release level an application was built with.
We must know more specifically what content within
that library it is actually dependenuponif we are to
determine whether that content is present in the library
found on aparticular runtime system that the application
is being run against. This is one of the key concerns
addressed by the library versioning and linking technol-

ogy present in both Solarisand Linux-based systemsz.

4 Library versioningin Solarisand Linux

Many contemporary systems (including Solaris and
Linux-based systems) use the EL F object file format (the
SystemV Executable and Linking Format) [SysVABI].
Where ELF is used, dynamically-linked libraries (librar-
ies implemented as shared objects) contain an so-
name—a specific means of naming the library (super-
ceding the library’s filename) stored within the library’s

object file.
When an application (or other dynamic object) which

depends on the library is built, it isthe library’s so-name
(not the filename) that is recorded in the application

binary as a dependency.* And when the application is

2. Those using GNU libc version 2 or later
3. The DT_SONAME contained in the shared object’s
.dynamic section.

run, dependency information contained in the applica-
tion binary is used by the runtime linker to locate and
load the libraries depended upon by the application.

In order to allow for upward compatible evolution of the
library—to permit an application constructed on a given
system release to encounter a different minor revision of
the library on the runtime platform (and still run suc-
cessfully), current practice is to have the library’s so-
name contain only the major number (e.g. | i bc. so. 1).
At this level applications record a dependency only on
the particular name and major release of the library and
may be run with any minor release level they encounter
on a runtime platform (albeit with the expectation of
finding a minor release level sufficient to provide the
interface content they depend upon).

For minor versioning, rather than the traditional method
of associating a single minor version number with the
library and incrementing it (as a way of saying “some-
thing was added”), a more useful approach is to define
specifically what has been added, and to record this
information in the library shared object itself.

So, instead of simply renaming the library (e.g. from
l'i bf 00.s0.1.2 to |ibfoo.so.1.3), the library’s
name remans |ibfoo.so.1 (reflecting its major
release level) and inside the library, alabel isintroduced
(say, “VERS _1.3") that indicated the GLOBAL symbols
added in the third minor revision level. If such labels are
added with each minor revision level (e.g. VERS 1.1,
VERS 1.2, VERS 1.3, ..) and al earlier labels pre-
served within subsequent minor release editions of the
library, the evolution of the library’s interface can be
seen clearly.

4.1 Basic mechanism

In 1995 the Solaris 2.5 link editor (I d) and the run-time
linker (I d. so. 1) were enhanced to support “version-
ing” and “scoping” of symbolsin shared objects.

The versioning mechanism itself is fairly stratightfor-
ward, smply alowing for the definition of named sets,
each of which contains a specified list of symbols. Sets
may be defined by providing an explicit list of symboals,
and/or by referring to other sets by their name to include

(inherit) the symbolsin those sets® [Solaris LLM].

4. More specifically the so-nameis recorded as a
DT_NEEDED entry in the application object’s
.dynamic section for each library used by the applica-
tion.

5. Full details of the library versioning technology in
Solaris may be found in the Solaris Linker and Librar-
ies Manual in the section describing “Versioning”.

The GNUY/Linux implementation6 is the same as that in
Solaris, although the GNU implementation provides
two extensions [GNU_Id]: First, as an alternative to pro-
viding definitions in a separate mapfile, “. synver”
assembler directives may be included in-line in the C
source code for the library. Second, a form of interface
overloading is provided: Multiple (incompatible) ver-
sions of the same function are allowed to exist in a sin-
gle revision of the library. This is done by mapping an
external symbol name (as referred to by an application)
to a different internal name for the function, depending
on the (minor) version set specified by the application’s
dependency. Special . synver directives must be pro-
vided to indicate the per-version mapping:

.symver old_printf,
.symver new_printf,

printf @ERS 1.1
printf @ERS_2.0

The intention is to allow several incompatible versions
of any individual interface to be carried simultaneously
within the library, and thus not have to increase the

library’s major version number”’.

When a versioned library (shared object) is built, a
“mapfile™ containing the list of exported symbols
grouped into named sets’ is passed to the link editor
I d(1) viathe- Moption.

As a simple example, consider the versioning mapfile
for ahypothetical library named | i bst ack. so. 1:

SUNW 1.1 {
gl obal :
pop;
push;
}
SUNWpri vate {
gl obal :
__bop;
__bush;
| ocal :
}

6. The mechanics for symbol versioning in Linux are
implemented in the GNU link editor (I d), provided in
thebi nuti | s package

7. We are not yet sure of the broader policies describing
the expected use of this mechanism however.

8. What iscalled a“versioning mapfile’ in Solarisis
caleda“VERSION script” by the GNU link editor, but
their syntax isthe same.

9. These named sets are called “versions’ in the parlance
of the Solaris Linker and Libraries Manual, indicating
the primary purpose intended by their design.

In Solaris system libraries, by convention, the “ SUNW”
prefix® is used in the set names (versions).

The versioning mapfile above instructs the link editor
(1d(1)) to construct a shared object which exports (as
GLOBALS) the symbols pop, push, __pop, and
__push for use by other binary objects (executables or
other shared objects). The “local : *;” directive
instructs the link editor to take al remaining GLOBAL
symbols defined in the objects being linked and make
them inaccessible externa to the shared object being
produced: Essentially the link editor “demotes’ these
symbols from GLOBAL to LOCAL symbols (see 4.1.2
“Scoping” below). For example, utility functions that
are part of the internal implementation interface of the
library (and hence intended only for use within the
shared object) will not be exported.

Suppose that in alater revision of | i bst ack. so. 1itis
decided that aswap() functionality is desired, then the
mapfile would be the same as above, but with an addi-
tional version definition:

SUNW 1.2 {
gl obal :
swap;
} SUNW1. 1;

This notation reflects the upward-compatible evolution
of the library’s Public interface, in which the set
SUNW _1.2 defines two new interfaces, and inherits
those interfacesin the set named SUNW_1.1. Theinher-
itance chain of symbol sets SUNW_1.1 .. SUNW_1.2
..., and so on, evolves corresponding to each new revi-
sion that adds interfaces to the library. Note that the ver-
sion numbering scheme following the SUNW prefix isa
major and minor number pair, where the major number
corresponds to the major revision number of the library.

4.1.1 Versioning

The immediate effect of the library’s versioning is that
at the time an application is built (compiled and linked),
the link editor can record into the application binary the
names of any versions (named sets of symbols) in the
library that the application depends on. This is the
default build practice for Solaris applications. Impor-
tantly, it is not the name of the latest set (version)

10. Originally this was intended as away to distinguish
interfaces introduced by Sun Microsystems—and
therefore perhaps particular to Solaris, from those
defined by broader standards, such asthe SystemV ABI
or the Open Group's UNIX) . The prefix “GLIBC” is
used by the GNU/glibc package in asimilar conven-
tion.

present in the library that is recorded, but the smallest
set (or sets) containing those symbols depended upon by
the application: For example, if I'i bc. so. 1 contained
six minor revision levels, of which the latest was
SUNW 1. 6 on the platform used to build t est _app, but
this application only relied on symbols present in revi-
sions up to the third minor release (SUNW 1. 3), then
the application would be labelled with that named set to
indicate its correct minor version dependency.

This permits applications built on later minor release
editions of the library to be run (correctly) with earlier
editions of the library, when their interface requirements
are constrained to an earlier release level. And second, it
ensures that applications which record a dependency on
a given named set (minor revision level) will not be

run*! with an edition of the library which does not pos-
sess that named set.

When the application is run, the runtime linker uses the
version dependency information recorded in the applica-
tion binary to determine if all these named sets (inter-
faces required by the application), are present in the
library found on the runtime platform. This ensures that
the sufficient minor revision content is present in the
library to meet the application’s needs (thus going
beyond simply using the application’s list of NEEDED so-
names to locate the correct major versions of the librar-
ies).

4.1.2 Scoping

Somewhat specifically designed to overcome a short-
coming of the C language’s symbol scoping capabilities,
implementation interface which is used only internal to
a library itsdlf (i.e. interface used only within a single
dynamic object) can be handled specially. A capability
is afforded by the Solaris link editor which permits a
reduction in the scope of those interfaces from GLOBAL
to LocAL within the library at the time that the library
(dynamic object) is linked. We refer to this as “scope
reduction” or library-level “scoping” of symbols.

The keyword | ocal : in a mapfile is a scope-reduction
directive, and provides that one or more symbols
intended for use only within the shared object itself may
be treated as library-level STATIC symbols. In this way
the shared library can control what symbols are intended
for export. Scope-reduced symbols are changed from
library GLOBAL symbolsto LOCAL symbols as part of the

11. At application start-up, awarning is emitted by the
Solaris runtime linker indicating that the library does
not contain the version required by the application, and
the application exits. Thisisin lieu of aruntime reloca-
tion error if the application were allowed to execute.

link editing process which produces the shared object,
thus preventing application programs (or any other
dynamic object) from accidentally (or intentionaly)
using them. As a corresponding effect, these symbols
are removed from the dynamic symbol table. Note that
scope-reduced symbols are not actually associated with
any named set.

4.2 Versioning practices (policies) in Solaris

To implement Solaris’s interface definition and upward
compatibility policies, we have defined a set of practices
which apply the library versioning mechanisms
described above. These practices are now used at Sun as
an intrinsic part of Solariss library development prac-
tices.

Sun defines the SolarisABI in terms of the interfaces to
the system’s libraries. First, at the library-naming level,
libraries are given a filename and so-namecorrespond-
ing to thelibrary’s major release level. Minor versioning
information is contained within the library binary.

In order to make clear which of alibrary’s GLOBAL sym-
bols are part of the ABI and which aren't, the symbol
versioning mechanism described above are used to clas-
sify all GLoOBAL symbols (as Public or Private, and by
ascribing each Public interface to a set indicating the
minor release level of the library in which it was intro-
duced). The set of al symbolsindicated to be Publicin a
system library constitutes the library’s ABI, and the col-
lection of all such librariesin a given release of Solaris
thus constitutes the SolarisABI. This ABI is self-docu-
menting since the definitional information (which sym-
bols are Public and which are Private) is part of the
library itself'? and readily accessible through system
utilities such as the pvs(1) (“print version section”)
command.

When the library versioning mechanisms were first
applied to the Solaris shared libraries, the scoping
mechanism was applied to hide all interfaces that are
part of the linkage between the individual compilation

12. These definitions are contained within each library
binary. They are reflected within the shared object by
three ELF sections: Two sections named
.SUNW_version and one named .SUNW_versym.
Thefirst has sh_type: SHT_SUNW_verdef, and gives
al those versions (named sets of symbols) defined by
thelibrary. The second section has sh_type:
SHT_SUNW_verneed and lists versions (named sets of
symbolsin other shared objects) depended upon by the
library). The third has sh_type: SHT_SUNW_versym,
and associates a set of GLOBAL symbolsin the library
with arespective “version” (named set) listed in the
first section in order to define each such set name.

units (. o files) of the library, but used only within the
library itself. These symbols are “ scoped out” (demoted
from GLOBAL to LOCAL in the link-editor’'s construction
of the shared object), so that these symbols are not visi-
ble external to the library and cannot be used by any
external dynamic object.

Remaining GLOBAL symbols (those interfaces that must
be visible external to the library) are separated into Pub-
lic and Private. GLOBAL symbols classified as Public
name interfaces intended for use by application devel op-
ers (they are documented and guaranteed not to change
incompatibly from one release of Solaristo the next).
Private symbols name interfaces that are part of the
Solarisimplementation (they can not be guaranteed to
remain compatible, or even to persist at al, from one
Solaris release to the next, and are not suitable for use
by application developers).

To reflect the upward compatible evolution represented
by a series of minor revisions to the library, the Public
symbols appear as a number of named sets of the form:
“SUNW_<major>.<minor>". Each named set (version)
identifies the full interface content present in a given
minor revision of the library. The set lists the Public
symbols introduced in that minor release, and names its
predecessor to inherit its contents (eg. SUNW_1.2
explicitly identifies the set of symbols added in the sec-
ond minor release of | i bc, and inherits SUNW_1.1—
the set of symbols present prior to that). A new version
is added to the library only when arelease of the library
introduces new interface content.

All Private symbols, in contrast, are associated with a
single version named “ SUNWprivate”. Symbols may be
added to (or removed from) this set from one release to
the next, and since there is no expectation of upward
compatibility in this set there is no inheritance chain of
versions for Private symbols. Recall that Private means
(system-internal implementation interface) and that
applications must not depend on these symbols. The
contents (or even the existence) of this set therefore
should not matter to an application.

All of the system libraries in Solariswhich provide the
basic OS and core networking services, as well as many
of the basic window system interfaces, have been ver-
sioned in thisway since Solaris2.6. The eventual goal is
to version al libraries shipped by Sun which can be
used with Solaris In due course it is hoped that the
same approach will be taken by libraries built by other
developers—particularly those “middleware” products
which are not included with the Solaris release, where
such libraries offer application-usable interfaces. The
intent is that all layered products that can be used with

Solarisdefine stable applicationinterfaces,in orderto
realize similar benefitsof upward binary compatibility
for applications that depend upon them.

4.3 \krsioning practices ihinux-based systems

The GNU “glibc” packageprovides about 20 shared
libraries (including I i bc) and makes extensve use of
theversioningmechanisnin | d(1), bothto implement
scope reduction for library-internal symbols, and to
indicate the library’s minor releaseevolution through
versioning.For example,in | i bc. so the currentver-
sion chain is:

GLIBC_2.0, GLIBC_2.1, GLIBC_2.1.1, GLIBC_2.1.2

For libraries that have not beenaddedto recently the
highestversionremainsthe last one in which content
was added.For example, the highestversionin I i b-
crypt.so is GLIBC_2.0.If anew library is addedat a
certainversionof the GNU glibc packagats initial ver-
sionsetnameis that of the correspondingpackagee.g.
librt.so begins at GLIBC_2.1

Looking at the RedhatLinux 6.2 release one can see
that most of the librariesthat are not part of the glibc

packag€ge.g.thoseof XFr ee86 andl i bgt k) arenotas
well managed:While most have versionsdefinedin

them,theseare currentlyonly a default versionwith no
structureyet defined(thatis, thereareonly two versions
I i b<name>.so.<n> and GCC. | NTERNAL). These
libraries currently have no Public inheritanceset chain
defined.

The mostimportantdifferencebetweenGNU/Linux and
Solaris is thatthe GNU gl i bc libraries do not distin-

guish the systems internal implementation-integice™

from their applicationinterface.By makingit clearthat
applicationdevelopersshould not use implementation
interfaces(seesection5), Solaris library developerscan
changethe library’s implementation in the future (for

example,to substitutenew algorithmsor to achiese per-

formance gains within the Solaris system libraries),

without the fear that existing applicationscould be bro-

ken.

5 Constructing stable applications

Once a systemhas clearly definedthe set of runtime
interfacesintended for use by applicationd® and is

13.Some analog to the SUNWpatte symbol set that
Solaris system libraries use to indicate unstable inter
library artifact which is not part of the ABI as opposed
to stable intedces that application delopers are
intended to use.

committedto maintainthemin an upward compatible
way, all properly constructed applicationswill continue
to run without change.This raisesthe questionof how

we decidethat ary given applicationmeetsthosecrite-

ria.

5.1 appcert : Checking applications’ inteate use

An immediatebenefitof the SolarisABI is thatwe can
usethe definition it providesto decidewhethera com-
piled application(or othersoftware product)usesunsta-
ble interfices. This can be done by a tool which:

« Determines all bindings an applicatiorales to
interfaces in Solaris'libraries.

e Extracts the systeminterfaice definition informa-
tion (Public vs. Pxiate interces) from the Solaris
libraries.

e Warns of ag bindings made directly from the
application to Pxiate (non-ABI) interfices in the
libraries.

We have written a tool for Solaris that performsthe
above examination and one or two other checksfor
potential binary instabilities (for more information see

[appcert]).

Implementedas a Perl script, appcert relieson two
important Solaris system utilities: To determine an
applications runtime dependenciegboth the libraries
and specific perlibrary symbol bindings) appcert
relies on a feature of the Solaris runtime linker
(1dd(1))15. Next, for eachSolaris systemlibrary the
applicationdepend®n, appcert usesthepvs(1) util-
ity to determinethelibrary’s ABI (its Publicvs. Private
symbols).

Someadditional checksrelatedto binary stability are
also performedby appcert. In particulay the static
linking of Solarisarchive libraries(e.g.,l i bsocket . a)
are flagged, as well as calls to certain specific inter-
faces—whetheindividual symbolsor entire libraries,
knowvn to have causedbinary breakagein earlier
releases.

14. This alsoappliesto ary otherlayeredsoftwareproduct
that is not part of the system (in the sense that it does
not such an ingral part of the core system soétxe
that it must be reblt and reissued as a part okey
release of the system soéive product).

15.1dd is run with the erironment \ariable LD_DEBRJG
set to “files,bindings”.

6 Benefits

Library versioning, as present in both Solarisand Linux
provides afiner grain solution to the minor-revision ren-
dezvous problem described above. An application which
has been constructed using versioned libraries records
the name(s) of the version(s) containing the interfaces
that it uses, and that it thus requires to be present in a
library on a runtime platform. Beyond location of a
library matching the major revision level needed by the
application on the runtime platform (an exact match of
the so-namerecorded in the application binary), the
runtime linker now also ensures that the minor version
dependencies recorded in the application are present
within the library.

Library scoping has been applied to eliminate a class of
library internal interface from external visibility.
Dynamic linking of the libraries is sped up by scoping,
since scoped symbols are removed from the dynamic
symbol table (.dynsym): Since scope-reduced symbols
become LocaL symbols, references to those symbols
(within the library) are resolved statically at the time the
library is constructed. Dynamic relocations are no
longer required for these symbols.

In Solaris library versioning has also been applied to
define the ABI—a stable, upward compatibly evolving
interface for applications, and to distinguish this from a
set of interfaces exposed by libraries which reflect part
of the system’s internal implementation. This serves as
the foundation for ensuring the integrity of successive
system releases, and for establishing stability in the
installed base of applications and software products that
rely on the system.

7 Conclusions

Given that the enabling technology is how present in the
GNU linker, and has been demonstrated in its applica-
tiontogl i bc, it strikes us as highly desirable that addi-
tional libraries used by Linux developers (e.g. XFr ee86
and | i bgt k) adopt versioning practices consistent with
those used by the GNU gl i bc libraries. An important
part of thiswill be to identify and advocate a set of poli-
cies to be used—especialy important considering the
number of independent developers contributing to
Linux-based systems. The more libraries that carefully
define and manage the evolution of their external inter-
faces, the smaller isthe chance for binary incompatibili-
tiesto arise for applications that depend upon them. And
the more uniform the set of practices for implementing
library interface definitions, the more practical will be
developers ability to understand and apply that in the
software products that they construct.

7.1 A LinuxABI

We are convinced that the GNU gl i bc project (and
other Linux-related library projects) would benefit if a
GNU/Linux ABI were defined for these libraries. This
could be done, just asin Solaris by adding an analog to
SUNWoprivate (for example, a “GLIBC_PRIVATE” for
the GNU gl i bc package), to indicate the system-inter-
na (non-ABI) symbol set. Currently both application
interface (ABI) and system-internal interface (non-ABI)
symbols appear to be exported together.

If the Linux community discovers these practices to be
effective, it should be as natural to define al library
interfaces as it was for Solaris In fact, due to the more
distributed and modular nature of open source devel op-
ment, it may prove even more fruitful to apply these
practices. Further, due to the independent devel opment
and release of many of the libraries used in Linux-based
systems, it may be necessary to explore additional clas-
sifications beyond the “Public” and “Private” used in
Solaris perhaps to identify and version inter-library
interfaces (those between separately-released collec-
tions of libraries). While it may appear that this use of
symbol versioning only applies to monoalithic “cathe-
dral” systems like Solaris it should be noted that Sun
also applies its versioning scheme to libraries from out-
side Sun (e.g., the CDE and X11 libraries) released as
part of Solaris

Given the similarity of mechanisms, the definition and
use of the ABI to cultivate a base of increasingly stable
applications, as in Solaris, could easily be done in
Linux. As aninitia step, and proof of concept, we have
developed a prototype of appcert on Linux. But while
the tool itself is a necessary element of the solution, the
identification of a core set of system libraries for Linux
systems and the definition and stabilization of their
interfaces is needed to redlize the full value. Such con-
siderations might serve as the basis for a broader discus-
sion of what libraries constitute the core system
interface for Linux, and what interface definition and
versioning practices might be useful to the open source
community and development process.

Our ultimate desire is that a set of normalized practices
for library interface definition and management of com-
patibility will be identified that are sufficient for com-
mon and widespread use in the industry.

7.2 Compatibility across Linux systems

Sun has benefitted from the library versioning practices-
described, both by defining Solaris's system interfaces
and in managing their upward compatible evolution. We
are excited to see these mechanisms and similar prac-

tices adopted by the GNU gl i bc project, and hope that
the practices will be developed and applied more
broadly in open source library devel opment.

A significant opportunity that arises from the definition
of an ABI and library versioning, is the ability to com-
pare the system interface provided by different system
or product releases. While most recently this has been
used in Solaris to maintain upward compatibility for
successive releases of a single product, definition of an
ABI in the Linux environment could serve to enable
cross-product binary compatibility, so that a software
product build on one Linux-based system (such as a
Caldera release) could be run successfully on others
(such as Linux-based distributions released by RedHat,
Debian, SUSE and so on). This could prove important to
avoid a Balkanization of the interface as offered by dif-
ferent Linux-based releases, and perhaps critical to the
success of the open source efforts related to its ongoing
development.

References

[appcert] “ Solaris appcert tool”, available at URL :
http://www.sun.com/devel opers/tool s/appcert.

[Gingell 87] Robert A. Gingell, Meng Lee, Xuong T.
Dang and Mary S. Weeks, “ Shared Librariesin SunOS’,
USENIX Conference Proceedings, pp. 131-147, Sum-
mer 1987, Phoenix, AZ.

[GNU_Id] Info pages for the GNU linker (Id).
File:ld.info, Node:VERSION, GNU glibc version 2.x.

[Huiz 97] Gerritt Huizenga, Dynix library versioning
practices, personal communication, 1997.

[Johnson 98] Michadl K. Johnson and Eric W. Troan,
“Linux Application Development”, Addison Wesley
Longman Inc., (c) 1998, Reading, MA, ISBN: 0-201-
30821-5.

[Solaris LLM] “Solaris Linker and Libraries Manual”,
available at URL: http://docs.sun.com/ab2/coll.45.13

[SysVABI] “System V Application Binary Interface”,
ISBN 0-13-100439-5, UNIX Press (Prentice Hall),
Englewood Cliffs, N.J. (c) 1993.

