
Library Interface V ersioning in Solaris and Linux

David J. Brown and Karl Runge

Solaris Engineering, Sun Microsystems Inc.

Abstract
Sharedlibraries in Solaris and Linux usea versioning
techniquewhich allows the link editor to record an
application’s dependency on a particularreleaselevel of
the library. The versioningmechanismoperatesat the
level of the library’s GLOBAL symbol names—afiner
granularity than simply associatinga version number
with the library itself.

In Solaris, thismechanismhasalsobeenusedto provide
a meansfor the system-suppliedshared libraries to
definetheir applicationinterface:to declarespecifically
which of their symbolsareintendedfor applicationuse
(andarestablefrom onereleaseto thenext), andwhich
are internal to the system’s implementation(andhence
subject to incompatible change).

Thispaperdescribesthelibrary symbol-versioningtech-
nologyin Linux andSolaris, thewaysin which it is used
to supportupward compatibility for existing compiled
applicationsfrom onereleaseof Solaris to thenext, and
the potential for similar mechanismsto be applied in
Linux versioned shared libraries.

1 Intr oduction
As Linux continuesto grow in popularity, andmorepeo-
ple cometo dependon it, issuesregardingcompatibility
will likely becomeincreasinglyimportant.In what fol-
lows we focus on a methodfor successive releasesof

systemsoftware,suchasLinux1 or Solaris, to maintain
binary compatibility with existing applications. We
describesomepracticesthatarepresentlybeingusedin
Solaris (at thelevel of thesystem’s library interfaces)to
define and maintain an Application Binary Interface
(ABI). We further describehow this definition along
with anapproachto library interfaceversioninghelpsto

ensure the stability of existing application binaries
across successive Solaris releases.

The hopeis that some,if not all, of thesepracticescan
beincorporatedinto thedevelopmentpracticesfor Linux
librariesto helpincreasebinarystability for Linux appli-
cations.Due to the differencesin developmentmodels
betweenGNU/Linux andSolaris, someaspectsof these
schemesmayneedto bemodifiedsuitablyto bebenefi-
cial toLinux development.

2 The ABI—a basis for system interface
definition
Maintaining source-level or API compatibility, is well
understood;less familiar is the idea of maintaining
binary-level, or ABI, compatibility. The Solaris ABI
(applicationbinary interface)is thesetof runtime inter-
facesin Solaris thatmaybedependeduponby anappli-
cation;if theABI evolvesin anupward-compatibleway
from one releaseof Solaris to the next, then existing
compiledapplicationsbuilt on a given releasewill run
on all subsequentreleaseswithout change(i.e. thereis
no fear that the applicationwill breakwhen run on a
later release of the system).

The enormousvalue of accessto source code may
obscurethefact that therearemany end-userswho can-
not exploit source-level compatibility and “simply”
recompiletheir applicationsasneededwhenthesystem
software haschanged.Most often it is large organiza-
tions, as comparedto individual usersor developers,
who arein this situation.Theneedfor thenew system’s
binary compatibility with their existing applications
may be becausethey do not have accessto the source
codefor certainapplications,but muchmoreoften the
logisticalnightmareof recompiling,retestingandredis-
tributing thehundredsor eventhousandsof applications
thata typical largeorganizationrelieson, is thepredom-
inant issue.

Consequently, establishinga clearruntimeinterfacefor
applications,andmaintainingits binarycompatibility is

1. WhenweusethetermLinux in thispaper, weareusing
the common shorthand, and mean a complete software
system based on a Linux kernel (those provided by
RedHat, SuSE, or Debian GNU/Linux are examples).

an important requirementfor a supplier of operating
systemsoftware.The meansof satisfyingthat require-
mentis throughprecisedefinitionof thesystem’s appli-
cationbinary interface(ABI): If theproducerof system
softwaremaintainsthe integrity of thoseinterfaces,and
the developersof software productswhich rely on the
systemalsoabideby it (andonly useinterfacesbelong-
ing to the ABI) then compatibility is assured.

2.1 Defining theSolaris ABI

At Sun,we tendto think of the system(Solaris) asthe
provider of a setof services,andtheseservicesarepri-
marily provided to applicationprogramsand/or other
layeredsoftwareproducts,which arebuilt andreleased
independently toSolaris.

To a first approximation,the broadersetof systemser-
vicesareprovided to applicationsby thesetof libraries
suppliedaspart of the system.While the kernel is the
underlyingfoundationfor this, asprovider of the most
fundamentalservices(and therecanbe a greatdealof
focus on this, especiallyin the Linux environment),a
completesoftwaresystemrepresentsa gooddealmore
thanthekernelalone:Soin Solaris it is thesetof system
libraries,andmorespecificallythe particularinterfaces
offeredby thoselibraries,thatweuseto characterizethe
application’s runtime interface.

Importantly, theseinterfacesareaccessedby a compiled
software product(suchas an application)via dynamic
linking—bindingsmadeat runtime betweentheapplica-
tion andthesharedobjectswhich implementthesystem
libraries.Theuseof sharedlibrariesis critically impor-
tantbecausedynamiclinking to theselibrariesallowsus
to maintainaclearseparationbetweenacompiledappli-
cationandthe systemimplementation.Focusingon the
runtimebinding interfacebetweenthe two is analogous
to defininga protocol,or may be thoughtof ascharac-
terizing the interface to theSolaris virtual machine.

2.2 Defining system-internal interfaces

While thesystemlibrariesprovide a setof interfacesto
allow applicationsaccessto systemservices,mostsys-
tem libraries also exposesome implementationinter-
face—makingvisible a broadersetof GLOBAL symbols
thanjust thoseintendedfor useby applications.System
librarieswhich are“lower” in thesystem’s implementa-
tion-architecturehierarchy can have intimate interde-
pendencies,so theselibrariesalsoexposesomesystem-
internal implementation interfaces. These interfaces,
such as those neededin libc to support particular
semanticsin conjunctionwith libthread or libnsl,
are really part of the system’s implementation (as
opposedto its external interface),andnot intendedfor

application use. To distinguish these two classesof
interface, we define the following terms:

“Public” - interfaceswhich are intended for use by
applications(and/orany otherlayeredsoftwareproducts
releasedasynchronouslyto Solaris), and which there-
fore have the upward compatible evolution property;

and“Private” - interfaceswhich arenot intendedfor use
by applications(or any asynchronouslyreleasedlayered
softwarecomponent),becausetheseinterfacesarepart
of the internal implementationof Solaris, and do not
have the upward compatible evolution property.

In thefollowing sections,wherewe discusshow change
is managed,we will befocusingon changesto thePub-
lic interface—namely, thosesysteminterfacesthataffect
applications (or any other layered software product
releasedasynchronously to the system software). In
Solaris we have not yet attemptedto provide for the
asynchronousreleaseof individual system libraries,
such as might be addressedby carefully managing
changeto theinterfacebetweensystemlibraries(i.e. the
Private,or internalimplementationinterfacemanifestby
the libraries). The assumptionat present,therefore,is
that a releaseof the systemconstitutes(andrequires)a
synchronous releaseof all the systemlibraries along
with the kernel.

3 Versioning
As a systemevolves, whetherby the addition of new
functionality, or via changesto thesystem’s implemen-
tationof existing functionality(asarefrequentlydoneto
improve its quality or performance),thereis theneedto
indicatethe kind of change.This is important,because
applications,and other software products have been
constructedwhich dependuponthis functionality. Since
changesto the system’s interfacescan affect existing
applications,somemeansto indicatethe natureof the
changes made is highly desirable.

A particularproperty that we considerimportant,and
thatwe’re trying to realize,is thatdevelopersof applica-
tions(andmany otherlayeredsoftwareproducts)canbe
insulatedfrom changesmadeto thesystemthey rely on
for many of the kinds of changeto that system’s soft-
ware.

3.1 Kinds of change—“major”, “minor” and
“micro” releases

At theoutsetis importantto definethekindsof change
thatcanbeintroducedto asystemsoftwareproduct(and
which also apply at a finer granularity to individual
componentsof a systemsoftwareproduct).In this paper

wewill focusspecificallyonthesystem’s libraries,since
librariesaretheprimarycomponentsof thesystemsoft-
ware which provide interfacesto other software prod-
ucts built to run on that system.The following three
terms define a simple taxonomy of changewhich is
applicable to all systems:

A major releaseis an incompatiblechangeto thesystem
software, and implies that [some] applicationsdepen-
denton theearliermajor release(specificallythosethat
relied upon the specific features that have changed
incompatibly)will needto bechangedin orderto work
on the new major release.

A minor releaseof the systemsoftware is an upward-
compatiblechange—onewhich addssomenew inter-
faces,but maintainscompatibility for all existing inter-
faces. Applications (or other software products)
dependentonanearlierminor releasewill notneedto be
changedin order to work on the new minor release:
Sincethe later releasecontainsall theearlierinterfaces,
the change(s)imparted to the systemdoesnot affect
those applications.

A micro releaseis a compatiblechangewhich doesnot
addany new interfaces:A changeis madeto the imple-
mentation(suchasto improve performance,scalability
or someotherqualitativeproperty)but providesaninter-
faceequivalentto all othermicro revisionsat the same
minor level. Again, dependentapplications(or other
softwareproducts)will not needto bechangedin order
to work on that releaseas the changeimpartedto the
system(or library) doesnot underminetheir dependen-
cies.

3.2 Managing changes to the system interface

Now let’s takea look athow thevariouskindsof change
to systeminterfacesdescribedabove have beenman-
aged in some systems historically.

Virtually all systemsthat we are aware of incorporate
somesort of version number in the filenameof each
library, andmostsystemsthatwe areawareof have had
some meansof recording both the major and minor
releaseconceptson a per-library basisin orderto indi-
cate and manageupward compatibility. Historically,
several systems have recorded minor and/or micro
releaselevels explicitly in the library’s filename:For
example,in Sequent’sDynix [Huiz 97] andSun’sSunOS
4.x (Solaris’s OS componentprior to Solaris2), library
filenames were of the sort:

lib<name>.so.<major>.<minor>

(for example,libc.so.2.9), andin Linux, library file-
namesoftenalsocontaina micro (or “release”)number,
being of the sort:

lib<name>.so.<major>.<minor>.<rls>

(for example,libz.1.1.3).

3.2.1 Library minor release

When a library evolves compatibly, existing interfaces
are preserved, but new onesare added(as neededfor
example, when new functional content is added).On
many systemsthis changeis reflectedin the library (or
libraries) affectedby exhibiting both major and minor
version numbersin the library’s filename(e.g., lib-
foo.so.1.2) and incrementing the library’s minor
numberto indicatethatnew interfaceswereadded(e.g.
to libfoo.so.1.3). Sincenothinghasbeendonethat
would breakapplicationsconstructedearlier (i.e. those
that were built using either libfoo.so.1.1 or lib-
foo.so.1.2), it is OK for theseolder applicationsto
be linked with the newer library at run-time (although
wehaveyet to describehow theapplication’sdependen-
cies are recordedand how this is managedat runtime,
but will do so shortly).

3.2.2 Library major release

If theinterfacesin a library sharedobjectchangeincom-
patibly, notonly musttherebeawayof indicatingthata
differentversionof thelibrary hasbeencreated,but also
of detectingapplicationbinariesthat were built using
the earlier edition of the library and preventing them
from linking at runtime with the library’s new major
release.

Analogousto a library’s minor release,the systemor
library provider’s practiceis to updatethe major revi-
sionnumberassociatedwith thelibrary. Sofor example,
an incompatiblechangeto libfoo would requirethat
the successor to libfoo.so.1 be named lib-

foo.so.2, or in the casethat both major and minor
numbersarereflectedin the library filename(as in our
precedingexample), the naming revision would, for
example,befrom libfoo.so.1.3 to libfoo.so.2.1
(where 2.1 indicatesthe first minor releaseof major
release 2).

3.3 How applications record library dependencies

Now while updating the major and/or minor version
numberon a library is a simpleway for thesystemsoft-
ware or library provider to indicate the change,this
practice presumesof course,that there is also some
mechanismfor labelling applicationbinarieswith the
revision levels of the libraries they have used.And at
run-time,somemechanismmustbe presentto ensurea

rendezvous of the application with an appropriate ver-
sion of each library it requires.

There must, at the very least, be a way of marking appli-
cations with the name and major revision level of a
library they were built with to ensure that application
executables requiring a given major version of a library
(e.g. libfoo.so.2) are not accidently linked with
another major version of the library, either a later (lib-
foo.so.3) or earlier one (libfoo.so.1), since we
know that these are incompatible with the application.
Related to this is that later releases of a system software
product, if they are to be able to run older application
binaries, must continue to provide earlier major edi-
tion(s) of the libraries, and have a mechanism for the
older applications to be linked at runtime to the major
version they require.

3.3.1 Historical Practice

On some earlier systems, when an application was built,
the link editor simply recorded within the application
binary, the filenameof each library that it depended
upon (that is, a name containing the major and minor
number of the library present on the build platform).

At run time, upward compatibility could be handled by
the runtime linker’s explicit knowledge of the semantics
of the version numbers contained in the library filena-
mes. In SunOS 4.x for example, the runtime linker
would look for a library with the same name and same
major release number as that recorded as a dependency
in the application (and in the presence of multiple
minor-version instances of the library that match the
major number, the instance with the highest minor ver-
sion number is used) [Gingell 87].

If the minor version number of the library found on the
runtime platform was greater or equal to that of the
dependency recorded in the application binary, dynamic
linking proceeded silently (since the library must con-
tain all the content required). In the case that the minor
revision found on the runtime platform was lower than
that recorded in the binary SunOS 4.x had the policy of
issuing a warning diagnostic (that an earlier version had
been found), but allowing the runtime linking to pro-
ceed. The application might still run successfully if it
had only happened to depend on functional content (and
interfaces) present in the earlier release of the library. If
the application had depended on later content however, a
runtime relocation error would occur when the applica-
tion invoked an interface not present in the library on the
runtime platform. Other systems may have adopted a
more conservative policy and disallowed an application
to run if a minor release of at least equal minor revision

level to that required by the application was present on
the runtime platform.

Neither of these policies is particularly satisfactory how-
ever, as the former might permit an application to run
whose dependencies can’t be met, while the latter pre-
vents a class of applications whose interface dependen-
cies could be met (i.e. whose interface needs were
limited to content present in an earlier minor edition of
the library, but were built on platforms with later minor
editions), from being allowed to run on platforms bear-
ing an earlier edition of the library than the application
was built (and hence labelled) with, but which in fact
happened to provide everything the application actually
required.

3.4 The minor-version rendezvous problem

The important but somewhat subtle issue associated
with minor revision changes, just described, is that an
application built with a given minor release of a library
might, but cannotbe certain to run on an earlier minor
release level of the library. This is because the applica-
tion may have used one or more of the interfaces added
to the library at a later minor release level, and not
present in the earlier one.

To resolve this problem we must know more than just
what minor release level an application was built with.
We must know more specifically what content within
that library it is actually dependentupon if we are to
determine whether that content is present in the library
found on a particular runtime system that the application
is being run against. This is one of the key concerns
addressed by the library versioning and linking technol-

ogy present in both Solaris and Linux-based systems2.

4 Library versioning in Solaris and Linux
Many contemporary systems (including Solaris and
Linux-based systems) use the ELF object file format (the
SystemV Executable and Linking Format) [SysVABI].
Where ELF is used, dynamically-linked libraries (librar-
ies implemented as shared objects) contain an so-
name—a specific means of naming the library (super-
ceding the library’s filename) stored within the library’s

object file3.

When an application (or other dynamic object) which
depends on the library is built, it is the library’s so-name
(not the filename) that is recorded in the application

binary as a dependency.4 And when the application is

2. Those using GNU libc version 2 or later
3. The DT_SONAME contained in the shared object’s

.dynamic section.

run, dependency information contained in the applica-
tion binary is used by the runtime linker to locate and
load the libraries depended upon by the application.

In order to allow for upward compatible evolution of the
library—to permit an application constructed on a given
system release to encounter a different minor revision of
the library on the runtime platform (and still run suc-
cessfully), current practice is to have the library’s so-
name contain only the major number (e.g. libc.so.1).
At this level applications record a dependency only on
the particular name and major release of the library and
may be run with any minor release level they encounter
on a runtime platform (albeit with the expectation of
finding a minor release level sufficient to provide the
interface content they depend upon).

For minor versioning, rather than the traditional method
of associating a single minor version number with the
library and incrementing it (as a way of saying “some-
thing was added”), a more useful approach is to define
specifically what has been added, and to record this
information in the library shared object itself.

So, instead of simply renaming the library (e.g. from
libfoo.so.1.2 to libfoo.so.1.3), the library’s
name remains libfoo.so.1 (reflecting its major
release level) and inside the library, a label is introduced
(say, “VERS_1.3”) that indicated the GLOBAL symbols
added in the third minor revision level. If such labels are
added with each minor revision level (e.g. VERS_1.1,
VERS_1.2, VERS_1.3, ...) and all earlier labels pre-
served within subsequent minor release editions of the
library, the evolution of the library’s interface can be
seen clearly.

4.1 Basic mechanism

In 1995 the Solaris 2.5 link editor (ld) and the run-time
linker (ld.so.1) were enhanced to support “version-
ing” and “scoping” of symbols in shared objects.

The versioning mechanism itself is fairly stratightfor-
ward, simply allowing for the definition of named sets,
each of which contains a specified list of symbols. Sets
may be defined by providing an explicit list of symbols,
and/or by referring to other sets by their name to include

(inherit) the symbols in those sets5 [Solaris LLM].

The GNU/Linux implementation6 is the same as that in
Solaris, although the GNU implementation provides
two extensions [GNU_ld]: First, as an alternative to pro-
viding definitions in a separate mapfile, “.symver”
assembler directives may be included in-line in the C
source code for the library. Second, a form of interface
overloading is provided: Multiple (incompatible) ver-
sions of the same function are allowed to exist in a sin-
gle revision of the library. This is done by mapping an
external symbol name (as referred to by an application)
to a different internal name for the function, depending
on the (minor) version set specified by the application’s
dependency. Special .symver directives must be pro-
vided to indicate the per-version mapping:

.symver old_printf, printf@VERS_1.1

.symver new_printf, printf@VERS_2.0

The intention is to allow several incompatible versions
of any individual interface to be carried simultaneously
within the library, and thus not have to increase the

library’s major version number7.

When a versioned library (shared object) is built, a

“mapfile8” containing the list of exported symbols

grouped into named sets9 is passed to the link editor
ld(1) via the -M option.

As a simple example, consider the versioning mapfile
for a hypothetical library named libstack.so.1:

SUNW_1.1 {
global:

pop;
push;

}

SUNWprivate {
global:

__pop;
__push;

local:
*;

}

4. More specifically the so-name is recorded as a
DT_NEEDED entry in the application object’s
.dynamic section for each library used by the applica-
tion.

5. Full details of the library versioning technology in
Solaris may be found in the Solaris Linker and Librar-
ies Manual in the section describing “Versioning”.

6. The mechanics for symbol versioning in Linux are
implemented in the GNU link editor (ld), provided in
the binutils package

7. We are not yet sure of the broader policies describing
the expected use of this mechanism however.

8. What is called a “versioning mapfile” in Solaris is
called a “VERSION script” by the GNU link editor, but
their syntax is the same.

9. These named sets are called “versions” in the parlance
of the Solaris Linker and Libraries Manual, indicating
the primary purpose intended by their design.

In Solaris system libraries, by convention, the “SUNW”

prefix10 is used in the set names (versions).

The versioning mapfile above instructs the link editor
(ld(1)) to construct a shared object which exports (as
GLOBALs) the symbols pop, push, __pop, and
__push for use by other binary objects (executables or
other shared objects). The “local: *;” directive
instructs the link editor to take all remaining GLOBAL

symbols defined in the objects being linked and make
them inaccessible external to the shared object being
produced: Essentially the link editor “demotes” these
symbols from GLOBAL to LOCAL symbols (see 4.1.2
“Scoping” below). For example, utility functions that
are part of the internal implementation interface of the
library (and hence intended only for use within the
shared object) will not be exported.

Suppose that in a later revision of libstack.so.1 it is
decided that a swap() functionality is desired, then the
mapfile would be the same as above, but with an addi-
tional version definition:

SUNW_1.2 {
global:

swap;
} SUNW_1.1;
...

This notation reflects the upward-compatible evolution
of the library’s Public interface, in which the set
SUNW_1.2 defines two new interfaces, and inherits
those interfaces in the set named SUNW_1.1. The inher-
itance chain of symbol sets SUNW_1.1 .. SUNW_1.2
..., and so on, evolves corresponding to each new revi-
sion that adds interfaces to the library. Note that the ver-
sion numbering scheme following the SUNW prefix is a
major and minor number pair, where the major number
corresponds to the major revision number of the library.

4.1.1 Versioning

The immediate effect of the library’s versioning is that
at the time an application is built (compiled and linked),
the link editor can record into the application binary the
names of any versions (named sets of symbols) in the
library that the application depends on. This is the
default build practice for Solaris applications. Impor-
tantly, it is not the name of the latest set (version)

present in the library that is recorded, but the smallest
set (or sets) containing those symbols depended upon by
the application: For example, if libc.so.1 contained
six minor revision levels, of which the latest was
SUNW_1.6 on the platform used to build test_app, but
this application only relied on symbols present in revi-
sions up to the third minor release (SUNW_1.3), then
the application would be labelled with that named set to
indicate its correct minor version dependency.

This permits applications built on later minor release
editions of the library to be run (correctly) with earlier
editions of the library, when their interface requirements
are constrained to an earlier release level. And second, it
ensures that applications which record a dependency on
a given named set (minor revision level) will not be

run11 with an edition of the library which does not pos-
sess that named set.

When the application is run, the runtime linker uses the
version dependency information recorded in the applica-
tion binary to determine if all these named sets (inter-
faces required by the application), are present in the
library found on the runtime platform. This ensures that
the sufficient minor revision content is present in the
library to meet the application’s needs (thus going
beyond simply using the application’s list of NEEDED so-
names to locate the correct major versions of the librar-
ies).

4.1.2 Scoping

Somewhat specifically designed to overcome a short-
coming of the C language’s symbol scoping capabilities,
implementation interface which is used only internal to
a library itself (i.e. interface used only within a single
dynamic object) can be handled specially. A capability
is afforded by the Solaris link editor which permits a
reduction in the scope of those interfaces from GLOBAL

to LOCAL within the library at the time that the library
(dynamic object) is linked. We refer to this as “scope
reduction” or library-level “scoping” of symbols.

The keyword local: in a mapfile is a scope-reduction
directive, and provides that one or more symbols
intended for use only within the shared object itself may
be treated as library-level STATIC symbols. In this way
the shared library can control what symbols are intended
for export. Scope-reduced symbols are changed from
library GLOBAL symbols to LOCAL symbols as part of the

10. Originally this was intended as a way to distinguish
interfaces introduced by Sun Microsystems—and
therefore perhaps particular to Solaris, from those
defined by broader standards, such as the SystemV ABI
or the Open Group’s UNIX) . The prefix “GLIBC” is
used by the GNU/glibc package in a similar conven-
tion.

11. At application start-up, a warning is emitted by the
Solaris runtime linker indicating that the library does
not contain the version required by the application, and
the application exits. This is in lieu of a runtime reloca-
tion error if the application were allowed to execute.

link editing process which produces the shared object,
thus preventing application programs (or any other
dynamic object) from accidentally (or intentionally)
using them. As a corresponding effect, these symbols
are removed from the dynamic symbol table. Note that
scope-reduced symbols are not actually associated with
any named set.

4.2 Versioning practices (policies) in Solaris

To implement Solaris’s interface definition and upward
compatibility policies, we have defined a set of practices
which apply the library versioning mechanisms
described above. These practices are now used at Sun as
an intrinsic part of Solaris’s library development prac-
tices.

Sun defines the SolarisABI in terms of the interfaces to
the system’s libraries. First, at the library-naming level,
libraries are given a filename and so-namecorrespond-
ing to the library’s major release level. Minor versioning
information is contained within the library binary.

In order to make clear which of a library’s GLOBAL sym-
bols are part of the ABI and which aren’t, the symbol
versioning mechanism described above are used to clas-
sify all GLOBAL symbols (as Public or Private, and by
ascribing each Public interface to a set indicating the
minor release level of the library in which it was intro-
duced). The set of all symbols indicated to be Public in a
system library constitutes the library’s ABI, and the col-
lection of all such libraries in a given release of Solaris
thus constitutes the SolarisABI. This ABI is self-docu-
menting since the definitional information (which sym-
bols are Public and which are Private) is part of the

library itself12 and readily accessible through system
utilities such as the pvs(1) (“print version section”)
command.

When the library versioning mechanisms were first
applied to the Solaris shared libraries, the scoping
mechanism was applied to hide all interfaces that are
part of the linkage between the individual compilation

units (.o files) of the library, but used only within the
library itself. These symbols are “scoped out” (demoted
from GLOBAL to LOCAL in the link-editor’s construction
of the shared object), so that these symbols are not visi-
ble external to the library and cannot be used by any
external dynamic object.

Remaining GLOBAL symbols (those interfaces that must
be visible external to the library) are separated into Pub-
lic and Private. GLOBAL symbols classified as Public
name interfaces intended for use by application develop-
ers (they are documented and guaranteed not to change
incompatibly from one release of Solaris to the next).
Private symbols name interfaces that are part of the
Solaris implementation (they can not be guaranteed to
remain compatible, or even to persist at all, from one
Solaris release to the next, and are not suitable for use
by application developers).

To reflect the upward compatible evolution represented
by a series of minor revisions to the library, the Public
symbols appear as a number of named sets of the form:
“SUNW_<major>.<minor>”. Each named set (version)
identifies the full interface content present in a given
minor revision of the library. The set lists the Public
symbols introduced in that minor release, and names its
predecessor to inherit its contents (e.g. SUNW_1.2
explicitly identifies the set of symbols added in the sec-
ond minor release of libc, and inherits SUNW_1.1—
the set of symbols present prior to that). A new version
is added to the library only when a release of the library
introduces new interface content.

All Private symbols, in contrast, are associated with a
single version named “SUNWprivate”. Symbols may be
added to (or removed from) this set from one release to
the next, and since there is no expectation of upward
compatibility in this set there is no inheritance chain of
versions for Private symbols. Recall that Private means
(system-internal implementation interface) and that
applications must not depend on these symbols. The
contents (or even the existence) of this set therefore
should not matter to an application.

All of the system libraries in Solariswhich provide the
basic OS and core networking services, as well as many
of the basic window system interfaces, have been ver-
sioned in this way since Solaris2.6. The eventual goal is
to version all libraries shipped by Sun which can be
used with Solaris. In due course it is hoped that the
same approach will be taken by libraries built by other
developers—particularly those “middleware” products
which are not included with the Solaris release, where
such libraries offer application-usable interfaces. The
intent is that all layered products that can be used with

12. These definitions are contained within each library
binary. They are reflected within the shared object by
three ELF sections: Two sections named
.SUNW_version and one named .SUNW_versym.
The first has sh_type: SHT_SUNW_verdef, and gives
all those versions (named sets of symbols) defined by
the library. The second section has sh_type:
SHT_SUNW_verneed and lists versions (named sets of
symbols in other shared objects) depended upon by the
library). The third has sh_type: SHT_SUNW_versym,
and associates a set of GLOBAL symbols in the library
with a respective “version” (named set) listed in the
first section in order to define each such set name.

Solarisdefinestable applicationinterfaces,in order to
realizesimilar benefitsof upward binary compatibility
for applications that depend upon them.

4.3 Versioning practices inLinux-based systems

The GNU “glibc” packageprovides about 20 shared
libraries (including libc) and makes extensive useof
theversioningmechanismin ld(1), bothto implement
scope reduction for library-internal symbols, and to
indicate the library’s minor releaseevolution through
versioning.For example, in libc.so the currentver-
sion chain is:

GLIBC_2.0, GLIBC_2.1, GLIBC_2.1.1, GLIBC_2.1.2

For libraries that have not beenaddedto recently, the
highestversion remainsthe last one in which content
was added.For example, the highestversion in lib-

crypt.so is GLIBC_2.0.If a new library is addedat a
certainversionof theGNU glibc packageits initial ver-
sionsetnameis thatof thecorrespondingpackage:e.g.
librt.so begins at GLIBC_2.1

Looking at the RedhatLinux 6.2 release,one can see
that most of the libraries that are not part of the glibc
package(e.g.thoseof XFree86 andlibgtk) arenot as
well managed:While most have versionsdefined in
them,thesearecurrentlyonly a default versionwith no
structureyet defined(thatis, thereareonly two versions
lib<name>.so.<n> and GCC.INTERNAL). These
librariescurrentlyhave no Public inheritancesetchain
defined.

ThemostimportantdifferencebetweenGNU/Linux and
Solaris is that the GNU glibc libraries do not distin-

guish the system’s internal implementation-interface13

from their applicationinterface.By makingit clearthat
applicationdevelopersshould not use implementation
interfaces(seesection5), Solaris library developerscan
changethe library’s implementation in the future (for
example,to substitutenew algorithmsor to achieve per-
formance gains within the Solaris system libraries),
without the fear thatexisting applicationscouldbebro-
ken.

5 Constructing stable applications
Once a systemhas clearly definedthe set of runtime

interfaces intended for use by applications14, and is

committedto maintain them in an upward compatible
way, all properly constructed applicationswill continue
to run without change.This raisesthe questionof how
we decidethat any given applicationmeetsthosecrite-
ria.

5.1 appcert: Checking applications’ interface use

An immediatebenefitof theSolarisABI is thatwe can
usethe definition it providesto decidewhethera com-
piled application(or othersoftwareproduct)usesunsta-
ble interfaces. This can be done by a tool which:

• Determines all bindings an application makes to
interfaces in Solaris’s libraries.

• Extracts the system’s interface definition informa-
tion (Public vs. Private interfaces) from the Solaris
libraries.

• Warns of any bindings made directly from the
application to Private (non-ABI) interfaces in the
libraries.

We have written a tool for Solaris that performs the
above examination and one or two other checksfor
potentialbinary instabilities(for more information see
[appcert]).

Implementedas a Perl script, appcert relies on two
important Solaris system utilities: To determine an
application’s runtime dependencies(both the libraries
and specific per-library symbol bindings) appcert
relies on a feature of the Solaris runtime linker

(ldd(1))15. Next, for eachSolaris systemlibrary the
applicationdependson,appcert usesthepvs(1) util-
ity to determinethe library’s ABI (its Publicvs. Private
symbols).

Someadditional checksrelatedto binary stability are
also performedby appcert. In particular, the static
linking of Solaris archive libraries(e.g.,libsocket.a)
are flagged,as well as calls to certain specific inter-
faces—whetherindividual symbolsor entire libraries,
known to have caused binary breakage in earlier
releases.

13.Some analog to the SUNWprivate symbol set that
Solaris system libraries use to indicate unstable inter-
library artifact which is not part of the ABI as opposed
to stable interfaces that application developers are
intended to use.

14.Thisalsoappliesto any otherlayeredsoftwareproduct
that is not part of the system (in the sense that it does
not such an integral part of the core system software
that it must be re-built and reissued as a part of every
release of the system software product).

15. ldd is run with the environment variable LD_DEBUG
set to “files,bindings”.

6 Benefits
Library versioning, as present in both Solarisand Linux
provides a finer grain solution to the minor-revision ren-
dezvous problem described above. An application which
has been constructed using versioned libraries records
the name(s) of the version(s) containing the interfaces
that it uses, and that it thus requires to be present in a
library on a runtime platform. Beyond location of a
library matching the major revision level needed by the
application on the runtime platform (an exact match of
the so-namerecorded in the application binary), the
runtime linker now also ensures that the minor version
dependencies recorded in the application are present
within the library.

Library scoping has been applied to eliminate a class of
library internal interface from external visibility.
Dynamic linking of the libraries is sped up by scoping,
since scoped symbols are removed from the dynamic
symbol table (.dynsym): Since scope-reduced symbols
become LOCAL symbols, references to those symbols
(within the library) are resolved statically at the time the
library is constructed. Dynamic relocations are no
longer required for these symbols.

In Solaris, library versioning has also been applied to
define the ABI—a stable, upward compatibly evolving
interface for applications, and to distinguish this from a
set of interfaces exposed by libraries which reflect part
of the system’s internal implementation. This serves as
the foundation for ensuring the integrity of successive
system releases, and for establishing stability in the
installed base of applications and software products that
rely on the system.

7 Conclusions
Given that the enabling technology is now present in the
GNU linker, and has been demonstrated in its applica-
tion to glibc, it strikes us as highly desirable that addi-
tional libraries used by Linux developers (e.g. XFree86
and libgtk) adopt versioning practices consistent with
those used by the GNU glibc libraries. An important
part of this will be to identify and advocate a set of poli-
cies to be used—especially important considering the
number of independent developers contributing to
Linux-based systems. The more libraries that carefully
define and manage the evolution of their external inter-
faces, the smaller is the chance for binary incompatibili-
ties to arise for applications that depend upon them. And
the more uniform the set of practices for implementing
library interface definitions, the more practical will be
developers ability to understand and apply that in the
software products that they construct.

7.1 A Linux ABI

We are convinced that the GNU glibc project (and
other Linux-related library projects) would benefit if a
GNU/Linux ABI were defined for these libraries. This
could be done, just as in Solaris, by adding an analog to
SUNWprivate (for example, a “GLIBC_PRIVATE” for
the GNU glibc package), to indicate the system-inter-
nal (non-ABI) symbol set. Currently both application
interface (ABI) and system-internal interface (non-ABI)
symbols appear to be exported together.

If the Linux community discovers these practices to be
effective, it should be as natural to define all library
interfaces as it was for Solaris. In fact, due to the more
distributed and modular nature of open source develop-
ment, it may prove even more fruitful to apply these
practices. Further, due to the independent development
and release of many of the libraries used in Linux-based
systems, it may be necessary to explore additional clas-
sifications beyond the “Public” and “Private” used in
Solaris, perhaps to identify and version inter-library
interfaces (those between separately-released collec-
tions of libraries). While it may appear that this use of
symbol versioning only applies to monolithic “cathe-
dral” systems like Solaris, it should be noted that Sun
also applies its versioning scheme to libraries from out-
side Sun (e.g., the CDE and X11 libraries) released as
part of Solaris.

Given the similarity of mechanisms, the definition and
use of the ABI to cultivate a base of increasingly stable
applications, as in Solaris, could easily be done in
Linux. As an initial step, and proof of concept, we have
developed a prototype of appcert on Linux. But while
the tool itself is a necessary element of the solution, the
identification of a core set of system libraries for Linux
systems and the definition and stabilization of their
interfaces is needed to realize the full value. Such con-
siderations might serve as the basis for a broader discus-
sion of what libraries constitute the core system
interface for Linux, and what interface definition and
versioning practices might be useful to the open source
community and development process.

Our ultimate desire is that a set of normalized practices
for library interface definition and management of com-
patibility will be identified that are sufficient for com-
mon and widespread use in the industry.

7.2 Compatibility across Linux systems

Sun has benefitted from the library versioning practices-
described, both by defining Solaris’s system interfaces
and in managing their upward compatible evolution. We
are excited to see these mechanisms and similar prac-

tices adopted by the GNU glibc project, and hope that
the practices will be developed and applied more
broadly in open source library development.

A significant opportunity that arises from the definition
of an ABI and library versioning, is the ability to com-
pare the system interface provided by different system
or product releases. While most recently this has been
used in Solaris to maintain upward compatibility for
successive releases of a single product, definition of an
ABI in the Linux environment could serve to enable
cross-product binary compatibility, so that a software
product build on one Linux-based system (such as a
Caldera release) could be run successfully on others
(such as Linux-based distributions released by RedHat,
Debian, SuSE and so on). This could prove important to
avoid a Balkanization of the interface as offered by dif-
ferent Linux-based releases, and perhaps critical to the
success of the open source efforts related to its ongoing
development.

References
[appcert] “Solaris appcert tool”, available at URL:
http://www.sun.com/developers/tools/appcert.

[Gingell 87] Robert A. Gingell, Meng Lee, Xuong T.
Dang and Mary S. Weeks, “Shared Libraries in SunOS”,
USENIX Conference Proceedings, pp. 131-147, Sum-
mer 1987, Phoenix, AZ.

[GNU_ld] Info pages for the GNU linker (ld).
File:ld.info, Node:VERSION, GNU glibc version 2.x.

[Huiz 97] Gerritt Huizenga, Dynix library versioning
practices, personal communication, 1997.

[Johnson 98] Michael K. Johnson and Eric W. Troan,
“Linux Application Development”, Addison Wesley
Longman Inc., (c) 1998, Reading, MA, ISBN: 0-201-
30821-5.

[Solaris LLM] “Solaris Linker and Libraries Manual”,
available at URL: http://docs.sun.com/ab2/coll.45.13

[SysVABI] “System V Application Binary Interface”,
ISBN 0-13-100439-5, UNIX Press (Prentice Hall),
Englewood Cliffs, N.J. (c) 1993.

